
Dyalog Programming
Reference Guide

Dyalog version 18.0

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2020 by Dyalog Limited
All rights reserved.

Dyalog Programming Reference Guide

Dyalog version 18.0
Document Revision: 20240625_180

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties ofmerchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.
Array Editor is copyright of davidliebtag.com
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, Javascript™ and Java™ are registered trademarks of Oracle and/or its
affiliates.
UNIX® is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark ofMicrosoft Corporation in the United States
and other countries.
macOS® and OS X® (operating system software) are trademarks of Apple Inc.,
registered in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

i

Contents

Chapter 1: Introduction 1
Workspaces 1
Legal Names 2
Arrays 3

Numbers 4
Characters 5
Enclosed Elements 5
Specification of Variables 6
Vector Notation 6
Structuring of Arrays 7
Display of Arrays 8
Prototypes and Fill Items 13
Cells and Sub-arrays 14

Expressions 16
Functions 17
Operators 19
Binding Strength 21
Function Trains 22
Search Functions and Hash Tables 27
Idiom Recognition 28

Idiom List 29
Parallel Execution 34
Complex Numbers 35
128 Bit Decimal Floating-Point Support 38

Introduction 38
System Variable: Floating-point Representation 38
Conversion between Decimal and Binary 40
Decimal Comparison Tolerance 41
Name Association and Floating-point Values 41
Decimal Floats and Microsoft.NET 41

Namespaces 42
Namespace Syntax 44
Namespace Reference Evaluation 45
Namespaces and Localisation 46
Namespace References 48
Unnamed Namespaces 49
Arrays of Namespace References 51
Distributed Assignment 53
Distributed Functions 55
Namespaces and Operators 57

ii

Serialising Namespaces 58
External Variables 60
Component Files 61
Auxiliary Processors 61

Chapter 2: Defined Functions & Operators 63
Traditional Functions and Operators 63

Model Syntax 64
Statements 65
Global & Local Names 66
Locals Lines 68
Namelists 69
Locked Functions & Operators 70
Function Declaration Statements 70
Access Statement 71
Attribute Statement 72
Implements Statement 73
Signature Statement 73
Control Structures 75
If Statement 77
While Statement 80
Repeat Statement 81
For Statement 82
Select Statement 85
With Statement 87
Hold Statement 88
Trap Statement 91
GoTo Statement 94
Return Statement 94
Leave Statement 94
Continue Statement 95
Section Statement 95
Disposable Statement 95
APL Line Editor 98

Dfns & Dops 105
Multi-Line Dfns 106
Default Left Argument 107
Guards 108
Shy Result 108
Lexical Name Scope 109
Error-Guards 110
Dops 113
Recursion 114
Tail Calls 118
Restrictions 119

Chapter 3: Object Oriented Programming 121

iii

Introducing Classes 121
Defining Classes 122
Editing Classes 122
Inheritance 123
Instances 124

Constructors 125
Constructor Overloading 126
Niladic (Default) Constructors 129
Empty Arrays of Instances: Why ? 130
Empty Arrays of Instances: How? 131
Base Constructors 133
Niladic Example 135
Monadic Example 136

Destructors 138
Class Members 140
Fields 141

Public Fields 141
Initialising Fields 142
Private Fields 143
Shared Fields 143
Trigger Fields 144

Methods 145
Shared Methods 146
Instance Methods 147
Superseding Base Class Methods 148

Properties 149
Simple Instance Properties 150
Simple Shared Properties 152
Numbered Properties 152
Example 153
The Default Property 155
ComponentFile Class 156
Keyed Properties 158
Example 161

Interfaces 162
Penguin Class Example 163

Including Namespaces in Classes 164
Example 165

Nested Classes 167
GolfService Example Class 167
GolfService Example 173

Namespace Scripts 175
Namespace Script Example 178

Including Script Files in Scripts 180
Class Declaration Statements 181

:Interface Statement 181
:Namespace Statement 181
:Class Statement 182

iv

:Using Statement 183
:Attribute Statement 184
:Access Statement 185
:Implements Statement 187
:Field Statement 188

:Property Section 190
PropertyArguments Class 191
PropertyGet Function 192
PropertySet Function 193
PropertyShape Function 194

Chapter 4: Threads and Triggers 195
Threads 195

Multi-Threading language elements. 196
Thread Switching 197
Name Scope 198
Stack Considerations 198
Globals and the Order of Execution 199
Threads & Niladic Functions 202
Threads & External Functions 203
Synchronising Threads 204
Semaphore Example 205
Latch Example 205
Debugging Threads 206

Triggers 208
Global Triggers 211

Chapter 5: APL Files 213
Introduction 213
Component Files 214
Programming Techniques 222
File Design 225
Internal Structure 225
The Effect of Buffering 228
Integrity and Security 229

Chapter 6: Error Trapping 231
Standard Error Action 231
Error Trapping Concepts 232
Example Traps 235
Signalling Events 242
Handling Unexpected Application Errors in Windows 243

Chapter 7: Error Messages 247
Introduction 247

v

APL Errors 248
Operating System Error Messages 251
Windows Operating System Error Messages 252
APL Error Messages 253

bad ws 253
cannot create name 253
clear ws 253
copy incomplete 254
DEADLOCK 254
defn error 254
DOMAIN ERROR 255
EOF INTERRUPT 255
EXCEPTION 255
FIELD CONTENTS RANK ERROR 256
FIELD CONTENTS TOO MANY COLUMNS 256
FIELD POSITION ERROR 256
FIELD CONTENTS TYPE MISMATCH 256
FIELD TYPE BEHAVIOUR UNRECOGNISED 256
FIELD ATTRIBUTES RANK ERROR 256
FIELD ATTRIBUTES LENGTH ERROR 256
FULL SCREEN ERROR 256
KEY CODE UNRECOGNISED 257
KEY CODE RANK ERROR 257
KEY CODE TYPE ERROR 257
FORMAT FILE ACCESS ERROR 257
FORMAT FILE ERROR 257
FILE ACCESS ERROR 258
FILE ACCESS ERROR CONVERTING 258
FILE COMPONENT DAMAGED 258
FILE DAMAGED 259
FILE FULL 259
FILE INDEX ERROR 259
FILE NAME ERROR 259
FILE NAME QUOTA USED UP 260
FILE SYSTEM ERROR 260
FILE SYSTEM NO SPACE 260
FILE SYSTEM NOT AVAILABLE 260
FILE SYSTEM TIES USED UP 260
FILE TIE ERROR 261
FILE TIED 261
FILE TIED REMOTELY 261
FILE TIE QUOTA USED UP 262
FORMAT ERROR 262
HOLD ERROR 262
incorrect command 263
INDEX ERROR 263
INTERNAL ERROR 264
INTERRUPT 264

vi

is name 264
LENGTH ERROR 265
LIMIT ERROR 265
NONCE ERROR 265
NO PIPES 266
name is not a ws 266
Name already exists 267
Namespace does not exist 267
not copied name 267
not found name 267
not saved this ws is name 268
PROCESSOR TABLE FULL 268
RANK ERROR 269
RESIZE 269
name saved date time 269
SYNTAX ERROR 270
sys error number 271
TIMEOUT 271
TRANSLATION ERROR 271
TRAP ERROR 271
too many names 272
VALUE ERROR 272
warning duplicate label 272
warning duplicate name 273
warning pendent operation 273
warning label name present 273
warning unmatched brackets 274
warning unmatched parentheses 274
was name 274
WS FULL 275
ws not found 275
ws too large 275

Operating System Error Messages 275
FILE ERROR 1 Not owner 276
FILE ERROR 2 No such file 276
FILE ERROR 5 I O error 276
FILE ERROR 6 No such device 276
FILE ERROR 13 Permission denied 276
FILE ERROR 20 Not a directory 276
FILE ERROR 21 Is a directory 276
FILE ERROR 23 File table overflow 277
FILE ERROR 24 Too many open 277
FILE ERROR 26 Text file busy 277
FILE ERROR 27 File too large 277
FILE ERROR 28 No space left 277
FILE ERROR 30 Read only file 277

System Errors 278

Symbolic Index 285

vii

Index 295

Chapter 1: Introduction 1

Chapter 1:

Introduction

Workspaces
APL expressions are evaluated within a workspace. The workspace may contain
objects, namely classes, namespaces, operators, functions and variables defined by
the user. APL expressions may include references to primitive operators, functions
and variables provided by APL. These objects do not reside in the workspace, but
space is required for the actual process of evaluation to accommodate temporary
data. During execution, APL records the state of execution through the STATE
INDICATOR which is dynamically maintained until the process is complete.
Space is also required to identify objects in the workspace in the SYMBOL
TABLE. Maintenance of the symbol table is entirely dynamic. It grows and
contracts according to the current workspace contents.

Workspaces may be explicitly saved with an identifying name. The workspace
may subsequently be loaded, or objects may be selectively copied from a saved
workspace into the current workspace.

Workspaces are stored in files whose names must conform to operating system
conventions. When a workspace name is specified without a file suffix, these are
added or implied. For further information, see Installation & Configuration Guide:
WSEXT configuration parameter.

If the name of the file in which the workspace is saved contains spaces, the ws
argument for the system functions)SAVE,)COPY,)PCOPY,)LOAD,)XLOAD and
)DROP should be surrounded by two double-quote (") characters. To include a "
character in the file name, you must specify two adjoining double-quotes (i.e. """").
Note however that Windows does not allow double-quotes in file names, so this
effectively applies only to non-Windows systems.

Examples

)SAVE Pete's work
unacceptable char

Chapter 1: Introduction 2

The above statement fails because the presence of the space in the file name
requires that it be surrounded by "s.

)SAVE "Pete's work"
Pete's work.dws saved Sun Jan 17 16:23:17 2016

)COPY "Pete's work" A B C
.\Pete's work.dws saved Sun Jan 17 16:23:17 2016

)DROP "Pete's work"
Sun Jan 17 16:24:16 2016

Legal Names
APL objects may be given names. A name may be any sequence of characters,
starting with a non-numeric character, selected from the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZ_
abcdefghijklmnopqrstuvwxyz
ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝß
àáâãäåæçèéêëìíîïðñòóôõöøùúûüþ
0123456789
∆⍙
ⒶⒷⒸⒹⒺⒻⒼⒽⒾⒿⓀⓁⓂⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ

Note that using a standard Unicode font (rather than APL385 Unicode used in the
table above), the last row above would appear as the circled alphabet, Ⓐ to Ⓩ .

Examples

Legal Illegal

THIS∆IS∆A∆NAME BAD NAME

X1233 3+21

SALES S!H|PRICE

pjb_1 1_pjb

Chapter 1: Introduction 3

Arrays
A Dyalog APL data structure is called an array. An array is a rectangular
arrangement of items, each of which may be a single number, a single character, a
namespace reference (ref), another array, or the ⎕OR of an object. An array which
is part of another array is also known as a subarray.

An array has two properties; structure and data type. Structure is identified by
rank, shape, and depth.

Rank
An array may have 0 or more axes or dimensions. The number of axes of an array
is known as its rank. Dyalog APL supports arrays with a maximum of 15 axes.

l An array with 0 axes (rank 0) is called a scalar.
l An array with 1 axis (rank 1) is called a vector.
l An array with 2 axes (rank 2) is called a matrix.
l An array with more than 2 axes is called a multi-dimensional array.

Shape
Each axis of an array may contain zero or more items. The number of items along
each axis of an array is called its shape. The shape of an array is itself a vector. Its
first item is the length of the first axis, its second item the length of the second
axis, and so on. An array, whose length along one or more axes is zero, is called
an empty array.

Depth
An array whose items are all simple scalars (i.e. single numbers, characters or refs)
is called a simple array. If one or more items of an array is not a simple scalar (i.e.
is another array, or a ⎕OR), the array is called a nested array. A nested array may
contain items which are themselves nested arrays. The degree of nesting of an
array is called its depth. A simple scalar has a depth of 0. A simple vector, matrix,
or multi-dimensional array has depth 1. An array whose items are all depth 1
subarrays has depth 2; one whose items are all depth 2 subarrays has depth 3, and
so forth.

Type
An array, whose elements are all numeric, is called a numeric array; its TYPE is
numeric. A character array is one in which all items are characters. An array
whose items contain both numeric and character elements is of MIXED type.

Chapter 1: Introduction 4

Numbers
Dyalog APL supports both real numbers and complex numbers.

Real Numbers
Numbers are entered or displayed using conventional decimal notation (e.g.
299792.458) or using a scaled form (e.g. 2.999792458E5).

On entry, a decimal point is optional if there is no fractional part. On output, a
number with no fractional part (an integer) is displayed without a decimal point.

The scaled form consists of:

a. an integer or decimal number called the mantissa,
b. the letter E or e,
c. an integer called the scale, or exponent.

The scale specifies the power of 10 by which the mantissa is to be multiplied.

Example

12 23.24 23.0 2.145E2
12 23.24 23 214.5

Negative numbers are preceded by the high minus (¯) symbol, not to be confused
with the minus (-) function. In scaled form, both the mantissa and the scale may
be negative.

Example

¯22 2.145E¯2 ¯10.25
¯22 0.02145 ¯10.25

Complex Numbers
Complex numbers use the J notation introduced in IBM APL2 and are written as
aJb or ajb (without spaces) where the real and imaginary parts a and b are
written as described above. The capital J is always used to display a value.

Examples

2+¯1*.5
2J1

.3j.5
0.3J0.5

1.2E5J¯4E¯4
120000J¯0.0004

Chapter 1: Introduction 5

Zilde
The empty vector (⍳0) may be represented by the numeric constant ⍬ called
ZILDE.

Characters
Characters are entered within a pair of APL quotes. The surrounding APL quotes
are not displayed on output. The APL quote character itself must be entered as a
pair of APL quotes.

Examples

'DYALOG APL'
DYALOG APL

'I DON''T KNOW'
I DON'T KNOW

'*'
*

Enclosed Elements
An array may be enclosed to form a scalar element through any of the following
means:

l by the enclose function (⊂)
l by inclusion in vector notation
l as the result of certain functions when applied to arrays

Examples

(⊂1 2 3),⊂'ABC'
1 2 3 ABC

(1 2 3) 'ABC'
1 2 3 ABC

⍳2 3
1 1 1 2 1 3
2 1 2 2 2 3

Chapter 1: Introduction 6

Specification of Variables
A variable is a named array. An undefined name or an existing variable may be
assigned an array by specification with the left arrow (←).

Examples

A←'CHIPS WITH EVERYTHING'
A

CHIPS WITH EVERYTHING

X Y←'ONE' 'TWO'
X

ONE
Y

TWO

Vector Notation
A series of two or more adjacent expressions results in a vector whose elements are
the enclosed arrays resulting from each expression. This is known as vector (or
strand) notation. Each expression in the series may consist of one of the following:

a. a single numeric value
b. single character, within a pair of quotes
c. more than one character, within a pair of quotes
d. the name of a variable
e. the evaluated input symbol ⎕
f. the quote-quad symbol ⍞
g. the name of a niladic, defined function yielding a result
h. any other APL expression which yields a result, within parentheses

Examples

⍴A←2 4 10
3

⍴TEXT←'ONE' 'TWO'
2

Numbers and characters may be mixed:

⍴X←'THE ANSWER IS ' 10
2

X[1]
THE ANSWER IS

X[2] + 32
42

Chapter 1: Introduction 7

Blanks, quotes or parentheses must separate adjacent items in vector notation.
Redundant blanks and parentheses are permitted. In this manual, the symbol pair
'←→' indicates the phrase 'is equivalent to'.

1 2 ←→ (1)(2) ←→ 1 (2) ←→ (1) 2
2'X'3 ←→ 2 'X' 3 ←→ (2) ('X') (3)
1 (2+2) ←→ (1) ((2+2)) ←→ ((1)) (2+2)

Vector notation may be used to define an item in vector notation:

⍴X ← 1 (2 3 4) ('THIS' 'AND' 'THAT')
3

X[2]
2 3 4

X[3]
THIS AND THAT

Expressions within parentheses are evaluated to produce an item in the vector:

Y ← (2+2) 'IS' 4
Y

4 IS 4

The following identity holds:

A B C ←→ (⊂A), (⊂B), ⊂C

Structuring of Arrays
A class of primitive functions re-structures arrays in some way. Arrays may be
input only in scalar or vector form. Structural functions may produce arrays with a
higher rank. The Structural functions are reshape (⍴), ravel, laminate and catenate
(,), reverse and rotate (⌽), transpose (⍉), mix and take (↑), split and drop (↓), enlist
(∊), and enclose (⊂).

Examples

2 2⍴1 2 3 4
1 2
3 4

2 2 4⍴'ABCDEFGHIJKLMNOP'
ABCD
EFGH

IJKL
MNOP

↓2 4⍴'COWSHENS'
COWS HENS

Chapter 1: Introduction 8

Display of Arrays
Simple scalars and vectors are displayed in a single line beginning at the left
margin. A number is separated from the next adjacent element by a single space.
The number of significant digits to be printed is determined by the system variable
⎕PP whose default value is 10. The fractional part of the number will be rounded
in the last digit if it cannot be represented within the print precision. Trailing
zeros after a decimal point and leading zeros will not be printed. An integer
number will display without a decimal point.

Examples

0.1 1.0 1.12
0.1 1 1.12

'A' 2 'B' 'C'
A 2 BC

÷3 2 6
0.3333333333 0.5 0.1666666667

If a number cannot be fully represented in ⎕PP significant digits, or if the number
requires more than five leading zeros after the decimal point, the number is
represented in scaled form. The mantissa will display up to ⎕PP significant digits,
but trailing zeros will not be displayed.

Examples

⎕PP←3

123 1234 12345 0.12345 0.00012345 0.00000012345
123 1.23E3 1.23E4 0.123 0.000123 1.23E¯7

Simple matrices are displayed in rectangular form, with one line per matrix row.
All elements in a given column are displayed in the same format, but the format
and width for each column is determined independently of other columns. A
column is treated as numeric if it contains any numeric elements. The width of a
numeric column is determined such that the decimal points (if any) are aligned;
that the E characters for scaled formats are aligned, with trailing zeros added to the
mantissae if necessary, and that integer forms are right-adjusted one place to the
left of the decimal point column (if any). Numeric columns are right-justified; a
column which contains no numeric elements is left-justified. Numeric columns are
separated from their neighbours by a single column of blanks.

Chapter 1: Introduction 9

Examples

2 4⍴'HANDFIST'
HAND
FIST

1 2 3 ∘.× 6 2 5
6 2 5

12 4 10
18 6 15

2 3⍴2 4 6.1 8 10.24 12
2 4 6.1
8 10.24 12

2 4⍴4 'A' 'B' 5 ¯0.000000003 'C' 'D' 123.56
4E0 AB 5

¯3E¯9 CD 123.56

In the display of non-simple arrays, each element is displayed within a rectangle
such that the rows and columns of the array are aligned. Simple items within the
array are displayed as above. For non-simple items, this rule is applied recursively,
with one space added on each side of the enclosed element for each level of
nesting.

Examples

⍳3
1 2 3

⊂⍳3
1 2 3

⊂⊂⍳3
1 2 3

('ONE' 1) ('TWO' 2) ('THREE' 3) ('FOUR' 4)
ONE 1 TWO 2 THREE 3 FOUR 4

2 4⍴'ONE' 1 'TWO' 2 'THREE' 3 'FOUR' 4
ONE 1 TWO 2
THREE 3 FOUR 4

Multi-dimensional arrays are displayed in rectangular planes. Planes are separated
by one blank line, and hyper-planes of higher dimensions are separated by
increasing numbers of blank lines. In all other respects, multi-dimensional arrays
are displayed in the same manner as matrices.

Chapter 1: Introduction 10

Examples

2 3 4⍴⍳24
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

3 1 1 3⍴'THEREDFOX'
THE

RED

FOX

The power of this form of display is made apparent when formatting informal
reports.

Examples

+AREAS←'West' 'Central' 'East'
West Central East

+PRODUCTS←'Biscuits' 'Cakes' 'Buns' 'Rolls'
Biscuits Cakes Buns Rolls

SALES←50 5.25 75 250 20.15 900 500
SALES,←80.98 650 1000 90.03 1200
+SALES←4 3⍴SALES

50 5.25 75
250 20.15 900
500 80.98 650

1000 90.03 1200

' ' PRODUCTS ⍪., AREAS SALES
West Central East

Biscuits 50 5.25 75
Cakes 250 20.15 900
Buns 500 80.98 650
Rolls 1000 90.03 1200

If the display of an array is wider than the page width, as set by the system
variable ⎕PW, it will be folded at or before ⎕PW and the folded portions indented
six spaces. The display of a simple numeric or mixed array may be folded at a
width less than ⎕PW so that individual numbers are not split across a page
boundary.

Chapter 1: Introduction 11

Example

⎕PW←40

?3 20⍴100
54 22 5 68 68 94 39 52 84 4 6 53 68
85 53 10 66 42 71 92 77 27 5 74 33 64
66 8 64 89 28 44 77 48 24 28 36 17 49

1 39 7 42 69 49 94
76 100 37 25 99 73 76
90 91 7 91 51 52 32

The]display User Command
The user command]display illustrates the structure of an array.

Examples

]display 'ABC' (1 4⍴1 2 3 4)
┌→────────────────┐
│ ┌→──┐ ┌→──────┐ │
│ │ABC│ ↓1 2 3 4│ │
│ └───┘ └~──────┘ │
└∊────────────────┘

]display ' 'PRODUCTS⍪.,AREAS SALES ⍝ see above
┌──┐
│ ┌→───────────────────────────────────┐ │
│ ↓ ┌→───┐ ┌→──────┐ ┌→───┐ │ │
│ │ │West│ │Central│ │East│ │ │
│ │ - └────┘ └───────┘ └────┘ │ │
│ │ ┌→───────┐ │ │
│ │ │Biscuits│ 50 5.25 75 │ │
│ │ └────────┘ │ │
│ │ ┌→────┐ │ │
│ │ │Cakes│ 250 20.15 900 │ │
│ │ └─────┘ │ │
│ │ ┌→───┐ │ │
│ │ │Buns│ 500 80.98 650 │ │
│ │ └────┘ │ │
│ │ ┌→────┐ │ │
│ │ │Rolls│ 1000 90.03 1200 │ │
│ │ └─────┘ │ │
│ └∊───────────────────────────────────┘ │
└∊───────────────────────────────────────┘

An explanation of the symbols that appear in the borders can be seen by running
]display -?

Chapter 1: Introduction 12

The]boxing User Command
The user command]boxing changes the way in which nested arrays are the
displayed in the Session. The following examples show different settings.

Examples

]boxing on -style=min
Was OFF -style=min

'ABC' (1 4⍴1 2 3 4)
┌───┬───────┐
│ABC│1 2 3 4│
└───┴───────┘

]boxing on -style=mid
Was ON -style=min

'ABC' (1 4⍴1 2 3 4)
┌→──┬───────┐
│ABC│1 2 3 4↓
└──→┴~─────→┘

]boxing on -style=max
┌→────────────────┐
│Was ON -style=mid│
└─────────────────┘

'ABC' (1 4⍴1 2 3 4)
┌→────────────────┐
│ ┌→──┐ ┌→──────┐ │
│ │ABC│ ↓1 2 3 4│ │
│ └───┘ └~──────┘ │
└∊────────────────┘

]boxing on -style=min
Was ON -style=max

]boxing off
Was ON

'ABC' (1 4⍴1 2 3 4)
ABC 1 2 3 4

Shy Results
Functions may return shy results.

A shy or suppressed result is a result that is not automatically displayed in the
Session, but is suppressed. A shy result of an expression may be displayed by
using it as an argument to a function that returns its argument unchanged, by
enclosing the expression in parentheses or by assigning it to ⎕.

Chapter 1: Introduction 13

Examples

A←10 ⍝ Result of assignment is shy
(A←10)

10
⎕DL 2 ⍝ Result of delay is shy
⎕←⎕DL

1.994
foo&88 ⍝ Result of Spawn (thread number) is shy
⊣foo&88

6

See also:

l Model Syntax on page 64
l Shy Result on page 108
l Language Reference Guide: Execute Expression.

Prototypes and Fill Items
Every array has an associated prototype which is derived from the array's first item.

If the first item is a number, the prototype is 0. Otherwise, if the first item is a
character, the prototype is ' '(space). Otherwise, if the first item is a (ref to) an
instance of a Class, the prototype is a ref to that Class.

Otherwise (in the nested case, when the first item is other than a simple scalar), the
prototype is defined recursively as the prototype of each of the array's first item.

Examples:

Array Prototype

1 2 3.4 0

2 3 5⍴'hello' ' '

99 'b' 66 0

(1 2)(3 4 5) 0 0

((1 2)3)(4 5 6) (0 0)0

'hello' 'world' ' '

⎕NEW MyClass MyClass

(88(⎕NEW MyClass)'X')7 0 MyClass ' '

Chapter 1: Introduction 14

Fill Items
Fill items for an overtake operation, are derived from the argument's prototype. For
each 0 or ' ' in the prototype, there is a corresponding 0 or ' ' in the fill item
and for each class reference in the prototype, there is a ref to a (newly constructed
and distinct) instance of that class that is initialised by the niladic (default)
constructor for that class, if defined.

Examples:

4↑1 2
1 2 0 0

4↑'ab'
ab

4↑(1 2)(3 4 5)
1 2 3 4 5 0 0 0 0

2↑⎕NEW MyClass
#.[Instance of MyClass] #.[Instance of MyClass]

In the last example, two distinct instances are constructed (the first by ⎕NEW and
the second by the overtake).

Fill items are used in a number of operations including:

l First (⊃ or ↑) of an empty array
l Fill-elements for overtake
l For use with the Each operator on an empty array

Cells and Sub-arrays
Certain functions and operators operate on particular cells or sub-arrays of an array,
which are identified and described as follows.

K-Cells
A rank-k cell or k-cell of an array are terms used to describe a sub-array on the last
k axes of the array. Negative k is interpreted as r+k where r is the rank of the
array, and is used to describe a sub-array on the leading |k axes of an array.

If X is a 3-dimensional array of shape 2 3 4, the 1-cells are its 6 rows each of 4
elements; and its 2-cells are its 2 matrices each of shape 3 4. Its 3-cells is the array
in its entirety. Its 0-cells are its individual elements.

Chapter 1: Introduction 15

Major Cells
The major cells of an array X is a term used to describe the sub-arrays on the
leading dimension of the array X with shape 1↓⍴X. Using the k-cell terminology,
the major cells are its ¯1-cells.

The major cells of a vector are its elements (0-cells). The major cells of a matrix are
its rows (1-cells), and the major cells of a 3-dimensional array are its matrices along
the first dimension (2-cells).

Examples

In the following, the major cells of A are 1979, 1990, 1997, 2007, and 2010; those
of B are 'Thatcher', 'Major', 'Blair', 'Brown', and 'Cameron'; and
those of C are the four 2-by-3 matrices.

A
1979 1990 1997 2007 2010

B
Thatcher
Major
Blair
Brown
Cameron

⍴B
5 8

⎕←C←4 2 3⍴⍳24
0 1 2
3 4 5

6 7 8
9 10 11

12 13 14
15 16 17

18 19 20
21 22 23

Using the k-cell terminology, if r is the rank of the array, its major cells are its r-
1-cells.

Note that if the right operand k of the Rank Operator ⍤ is negative, it is
interpreted as 0⌈r+k. Therefore the value ¯1 selects the major cells of the array.

Chapter 1: Introduction 16

Expressions
An expression is a sequence of one or more syntactic tokens which may be
symbols or constants or names representing arrays (variables) or functions. An
expression which produces an array is called an ARRAY EXPRESSION. An
expression which produces a function is called a FUNCTION EXPRESSION. Some
expressions do not produce a result.

An expression may be enclosed within parentheses.

Evaluation of an expression proceeds from right to left, unless modified by
parentheses. If an entire expression results in an array that is not assigned to a
name, then that array value is displayed. (Some system functions and defined
functions return an array result only if the result is assigned to a name or if the
result is the argument of a function or operator.)

Examples

X←2×3-1

2×3-1
4

(2×3)-1
5

Either blanks or parentheses are required to separate constants, the names of
variables, and the names of defined functions which are adjacent. Excessive
blanks or sets of parentheses are redundant, but permitted. If F is a function, then:

F 2←→ F(2) ←→ (F)2 ←→ (F) (2) ←→ F (2) ←→ F ((2))

Blanks or parentheses are not needed to separate primitive functions from names or
constants, but they are permitted:

-2 ←→ (-)(2) ←→ (-) 2

Blanks or parentheses are not needed to separate operators from primitive
functions, names or constants. They are permitted with the single exception that a
dyadic operator must have its right argument available when encountered. The
following syntactical forms are accepted:

(+.×) ←→ (+).× ←→ +.(×)

The use of parentheses in the following examples is not accepted:

+(.)× or (+.)×

Chapter 1: Introduction 17

Functions
A function is an operation which is performed on zero, one or two array arguments
and may produce an array result. Three forms are permitted:

l NILADIC defined for no arguments
l MONADIC defined for a right but not a left argument
l DYADIC defined for a left and a right argument

The number of arguments is referred to as its VALENCE.

The name of a non-niladic function is AMBIVALENT; that is, it potentially
represents both a monadic and a dyadic function, though it might not be defined
for both. The usage in an expression is determined by syntactical context. If the
usage is not defined an error results.

Functions have long SCOPE on the right; that is, the right argument of the
function is the result of the entire expression to its right which must be an array.
A dyadic function has short scope on the left; that is, the left argument of the
function is the array immediately to its left. Left scope may be extended by
enclosing an expression in parentheses whence the result must be an array.

For some functions, the explicit result is suppressed if it would otherwise be
displayed on completion of evaluation of the expression. This applies on
assignment to a variable name. It applies for certain system functions, and may
also apply for defined functions.

Examples

10×5-2×4
¯30

2×4
8

5-8
¯3

10×¯3
¯30

(10×5)-2×4
42

Chapter 1: Introduction 18

Defined Functions
Functions may be defined with the system function ⎕FX, or with the function
editor. A function consists of a HEADER which identifies the syntax of the
function, and a BODY in which one or more APL statements are specified.

The header syntax identifies the function name, its (optional) result and its
(optional) arguments. If a function is ambivalent, it is defined with two arguments
but with the left argument within braces ({}). If an ambivalent function is called
monadically, the left argument has no value inside the function. If the explicit
result is to be suppressed for display purposes, the result is shown within braces.
A function need not produce an explicit result. Refer to Chapter 2 for further
details.

Example

∇ R←{A} FOO B
[1] R←⊃'MONADIC' 'DYADIC'[⎕IO+0≠⎕NC'A']
[2] ∇

FOO 1
MONADIC

'X' FOO 'Y'
DYADIC

Functions may also be created by using assignment (←).

Function Assignment & Display
The result of a function-expression may be given a name. This is known as
FUNCTION ASSIGNMENT (see also Dfns & Dops on page 105). If the result of a
function-expression is not given a name, its value is displayed. This is termed
FUNCTION DISPLAY.

Examples

PLUS←+
PLUS

+
SUM←+/
SUM

+/

Function expressions may include defined functions and operators. These are
displayed as a ∇ followed by their name.

Chapter 1: Introduction 19

Example

∇ R←MEAN X ⍝ Arithmetic mean
[1] R←(+/X)÷⍴X

∇

MEAN
∇MEAN

AVERAGE←MEAN
AVERAGE

∇MEAN
AVG←MEAN∘,
AVG

∇MEAN ∘,

Operators
An operator is an operation on one or two operands which produces a function
called a DERIVED FUNCTION. An operand may be a function or an array.
Operators are not ambivalent. They require either one or two operands as
applicable to the particular operator. However, the derived function may be
ambivalent. The derived function need not return a result. Operators have higher
precedence than functions. Operators have long scope on the left. That is, the left
operand is the longest function or array expression on its left. The left operand
may be terminated by:

1. the end of the expression
2. the right-most of two consecutive functions
3. a function with an array to its left
4. an array with a function to its left

an array or function to the right of a monadic operator.

A dyadic operator has short scope on the right. That is, the right operand of an
operator is the single function or array on its right. Right scope may be extended
by enclosing an expression in parentheses.

Examples

⍴¨X←'WILLIAM' 'MARY' 'BELLE'
7 4 5

⍴∘⍴¨X
1 1 1

(⍴∘⍴)¨X
1 1 1

Chapter 1: Introduction 20

⎕∘←∘⎕VR¨'PLUS' 'MINUS'
∇ R←A PLUS B

[1] R←A+B
∇
∇ R←A MINUS B

[1] R←A-B
∇

PLUS/1 2 3 4
10

Defined Operators
Operators may be defined with the system function ⎕FX, or with the function
editor. A defined operator consists of a HEADER which identifies the syntax of
the operator, and a BODY in which one or more APL statements are specified.

A defined operator may have one or two operands; and its derived function may
have one or two arguments, and may or may not produce a result. The header
syntax defines the operator name, its operand(s), the argument(s) to its derived
function, and the result (if any) of its derived function. The names of the operator
and its operand(s) are separated from the name(s) of the argument(s) to its derived
function by parentheses.

Example

∇ R←A(F AND G)B
[1] R←(A F B)(A G B)

∇

The above example shows a dyadic operator called AND with two operands (F
and G). The operator produces a derived function which takes two arguments (A
and B), and produces a result (R).

12 +AND÷ 4
16 3

Operands passed to an operator may be either functions or arrays.

12 (3 AND 5) 4
12 3 4 12 5 4

12 (× AND 5) 4
48 12 5 4

Chapter 1: Introduction 21

Binding Strength
For two entities X and Y that are adjacent in an expression (that is, X Y), the
binding strength between them and the result of the bind is shown in this table:

Y

A F H MOP DOP DOT IDX

X

A 6 A 3 AF 3 AF 4 F 7 REF 4 A

F 2 A 1 F 4 F 4 F 4 F

H 1 F 4 F 4 F 4 H

AF 2 A 1 F

MOP 4 ERR

DOP 5 MOP 5 MOP 5 MOP

JOT 5 MOP 5 MOP 5 MOP 4 F

DOT 6 ERR 5 MOP 5 MOP 6 ERR

REF 7 A 7 F 7 H 7 MOP 7 DOP

IDX 3 ERR 3 ERR 3 ERR

A : *Array, for example, 0 1 2 'hello' ⍺ ⍵

F : *Function (primitive/defined/derived/system), for example, + - +.×
myfn ⎕CR {⍺ ⍵}

H : *Hybrid function/operator, that is, / ⌿ \ ⍀
AF : Bound left argument, for example, 2+
MOP : *Monadic operator, for example, ¨ ⍨ &
DOP : Dyadic operator, for example, ⍣ ⍠ ⍤ ⌸
JOT : Jot, that is, compose/null operand ∘
DOT : Dot, that is, reference/product .
IDX : square-bracketed expression, for example, [⍺+⍳⍵]
ERR : Error

* indicates a "first-class" entity, which can be parenthesised or named

In this table:

l the higher the number, the stronger the binding
l an empty field indicates no binding for this combination; an error.

For example, in the expression a b.c[d], where a, b, c and d are arrays, the
binding proceeds:

Chapter 1: Introduction 22

a b . c [d]
6 7 6 4 ⍝ binding strengths between entities

→ a (b.) c [d]
0 7 4

→ a (b.c) [d]
6 4

→ (a(b.c))[d]

Function Trains
Introduction
A Train is a derived function constructed from a sequence of 2 or 3 functions, or
from an array followed by two functions, which bind together to form a function.

Note that the right-most item of a function train (which is by definition a function)
must be isolated from anything to its right, otherwise it will be bound to that
rather than to the items to its left. This is done using parentheses.

For example, the following expression comprises a function train -,÷ that is
separated from its argument 2 by parentheses:

(-,÷) 2
¯2 0.5

and means:

1. Calculate the reciprocal of 2
2. Calculate the negation of 2
3. Catenate these 2 results together

Whereas, without the parentheses to identify the function train, the expression
means (as it did before):

1. Calculate the reciprocal of 2
2. Ravel the result of step 1
3. Negate the result of step 2

-,÷ 2
¯0.5

Chapter 1: Introduction 23

Forks and Atops
The following trains are currently supported where f, g and h are functions and A
is an array:

f g h
A g h

g h

The 3-item trains (f g h) and (A g h) are termed forks while the 2-item train
(g h) is termed an atop. To distinguish the two styles of fork, we can use the
terms fgh-fork or Agh-fork.

Trains as Functions
A train is syntactically equivalent to a function and so, in common with any other
function, may be:

l named using assignment
l applied to or between arguments
l consumed by operators as an operand
l and so forth.

In particular, trains may be applied to a single array (monadic use) or between 2
arrays (dyadic use), providing six new constructs.

⍺(f g h)⍵ ←→ (⍺ f ⍵) g (⍺ h ⍵) ⍝ dyadic (fgh) fork
⍺(A g h)⍵ ←→ A g (⍺ h ⍵) ⍝ dyadic (Agh) fork
⍺(g h)⍵ ←→ g (⍺ h ⍵) ⍝ dyadic atop

(f g h)⍵ ←→ (f ⍵) g (h ⍵) ⍝ monadic (fgh) fork
(A g h)⍵ ←→ A g (h ⍵) ⍝ monadic (Agh) fork
(g h)⍵ ←→ g (h ⍵) ⍝ monadic atop

Identifying a Train
For a sequence to be interpreted as a train it must be separated from the argument
to which it is applied. This can be done using parentheses or by naming the
derived function.

Example - fork: negation of catenated with reciprocal

(-,÷)5
¯5 0.2

Chapter 1: Introduction 24

Example - named fork

negrec←-,÷
negrec 5

¯5 0.2

Whereas, without these means to identify the sequence as a train, the expression:

-,÷ 5
¯0.2

means the negation of the ravel of the reciprocal of 5.

Idiom Recognition
Function trains lend themselves to idiom recognition, a technique used to optimise
the performance of certain expressions.

Example

An expression to find the first position in a random integer vector X of a number
greater than 999000 is:

X←?1e6⍴1e6
(X≥999000)⍳1

1704

A function train is not only more concise, it is faster too.

X (⍳∘1 ≥) 999000
1704

Trains of Trains
As a train resolves to a function, a sequences of more than 3 functions represents a
train of trains. Function sequences longer than 3 are bound in threes, starting from
the right:

... fu fv fw fx fy fz → ... fu (fv fw (fx fy fz))

This means that, in the absence of parentheses, a sequence of an odd number of
functions resolves to a 3-train (fork) and an even-numbered sequence resolves to a
2-train (atop):

e f g h i j k → e f(g h(i j k)) ⍝ fork(fork(fork))
f g h i j k → f(g h(i j k)) ⍝ atop(fork(fork))

Chapter 1: Introduction 25

Examples

6(+,-,×,÷)2 ⍝ fork:(6+2),((6-2),((6×2),(6÷2)))
8 4 12 3

6(⌽+,-,×,÷)2 ⍝ atop: ⌽ (6+2), ...
3 12 4 8

]boxing on
Was OFF

+,-,×,÷ ⍝ boxed display of fork
┌─┬─┬─────────────┐
│+│,│┌─┬─┬───────┐│
│ │ ││-│,│┌─┬─┬─┐││
│ │ ││ │ ││×│,│÷│││
│ │ ││ │ │└─┴─┴─┘││
│ │ │└─┴─┴───────┘│
└─┴─┴─────────────┘

⌽+,-,×,÷ ⍝ boxed display of atop
┌─┬───────────────────┐
│⌽│┌─┬─┬─────────────┐│
│ ││+│,│┌─┬─┬───────┐││
│ ││ │ ││-│,│┌─┬─┬─┐│││
│ ││ │ ││ │ ││×│,│÷││││
│ ││ │ ││ │ │└─┴─┴─┘│││
│ ││ │ │└─┴─┴───────┘││
│ │└─┴─┴─────────────┘│
└─┴───────────────────┘

]boxing -trains=tree
Was -trains=box

+,-,×,÷ ⍝ boxed (tree) display of fork
┌─┼───┐
+ , ┌─┼───┐

- , ┌─┼─┐
× , ÷

Chapter 1: Introduction 26

Binding Strengths
The binding strength between the items of a train is less than that of operand-
operator binding. In other words, operators bind first with their function (or array)
operands to form derived functions, which may then participate as items in a train.

Example:

+⌿ ÷ ≢ ⍝ fork for mean value
┌─────┬─┬─┐
│┌─┬─┐│÷│≢│
││+│⌿││ │ │
│└─┴─┘│ │ │
└─────┴─┴─┘

⌊/,⌈/ ⍝ fork for min_max
┌─────┬─┬─────┐
│┌─┬─┐│,│┌─┬─┐│
││⌊│/││ ││⌈│/││
│└─┴─┘│ │└─┴─┘│
└─────┴─┴─────┘

This means that any of the four hybrid tokens / ⌿ \ ⍀ will not be interpreted as
a function if there's a function to its left in the train. In order to fix one of these
tokens as a replicate or expand function, it must be isolated from the function to its
left:

(⍳/⍳)3 ⍝ → ⍳/ atop ⍳3 → RANK ERROR
RANK ERROR

(⍳{⍺/⍵}⍳)3 ⍝ → (⍳3){⍺/⍵}(⍳3) → (⍳3)/(⍳3)
1 2 2 3 3 3

(⍳(/∘⊢)⍳)3 ⍝ → (⍳3)/⊢(⍳3)
1 2 2 3 3 3

(2/⍳)3 ⍝ Agh-fork is OK
1 1 2 2 3 3

Chapter 1: Introduction 27

Search Functions and Hash Tables
Primitive dyadic search functions, such as ⍳ (index of) and ∊ (membership) have a
principal argument in which items of the other subject argument are located.

In the case of ⍳, the principal argument is the one on the left and in the case of ∊,
it is the one on the right. The following table shows the principal (P) and subject
(s) arguments for each of the functions.

P ⍳ s Index of

s ∊ P Membership

s ∩ P Intersection

P ∪ s Union

s ~ P Without

P {(↓⍺)⍳↓⍵} s Matrix Iota (idiom)

P∘⍋ and P∘⍒ Grade

The Dyalog APL implementation of these functions already uses a technique
known as hashing to improve performance over a simple linear search. (Note that ⍷
(find) does not employ the same hashing technique, and is excluded from this
discussion.)

Building a hash table for the principal argument takes a significant time but is
rewarded by a considerably quicker search for each item in the subject.
Unfortunately, the hash table is discarded each time the function completes and
must be reconstructed for a subsequent call (even if its principal argument is
identical to that in the previous one).

For optimal performance of repeated search operations, the hash table may be
retained between calls, by binding the function with its principal argument using
the primitive ∘ (compose) operator. The retained hash table is then used directly
whenever this monadic derived function is applied to a subject argument.

Notice that retaining the hash table pays off only on a second or subsequent
application of the derived function. This usually occurs in one of two ways: either
the derived function is named for later (and repeated) use, as in the first example
below or it is applied repeatedly as the operand of a primitive or defined operator,
as in the second example.

Chapter 1: Introduction 28

Example: naming a derived function.

words←'red' 'ylo' 'grn' 'brn' 'blu' 'pnk' 'blk'

find←words∘⍳ ⍝ monadic find
function

find'blk' 'blu' 'grn' 'ylo' ⍝
7 5 3 2

find'grn' 'brn' 'ylo' 'red' ⍝ fast find
3 4 2 1

Example: repeated application by (¨) each operator.

∊∘⎕A¨'This' 'And' 'That'
1 0 0 0 1 0 0 1 0 0 0

Idiom Recognition
Idioms are commonly used expressions that are recognised and evaluated
internally, providing a significant performance improvement.

For example, the idiom BV/⍳⍴A (where BV is a Boolean vector and A is an array)
would (in earlier Versions of Dyalog APL) have been evaluated in 3 steps as
follows:

1. Evaluate ⍴A and store result in temporary variable temp1 (temp1 is just an
arbitrary name for the purposes of this explanation)

2. Evaluate ⍳temp1 and store result in temporary variable temp2.
3. Evaluate BV/temp2
4. Discard temporary variables

In the current Version of Dyalog APL, the expression is recognised in its entirety
and processed in a single step as if it were a single primitive function. In this case,
the resultant improvement in performance is between 2 and 4.5.

Idiom recognition is precise; an expression that is almost identical but not exactly
identical to an expression given in the Idiom List on page 29 table will not be
recognised.

For example, ⎕AV⍳ will be recognised as an idiom, but (⎕AV)⍳ will not.
Similarly, (,)/ would not be recognized as the Join idiom.

Chapter 1: Introduction 29

Idiom List
In the following table, arguments to the idiom have types and ranks as follows:

Type Description Rank Description

C Character S Scalar or 1-item vector

B Boolean V Vector

N Numeric M Matrix

P Nested A Array of any rank

X any type

For example: NV: numeric vector, CM: character matrix, PV: nested vector.

Idiom Description

⍴⍴XA The rank of XA as a 1-element vector

≢⍴XA The rank of XA as a scalar

BV/⍳NS The subset of NS corresponding to the 1s in BV

BV/⍳⍴XV The positions in XV corresponding to the 1s in BV

NA⊃¨⊂XV
The subset of XV in the index positions defined by NA
(equivalent to XV[NA])

XA1{}XA2 XA1 and XA2 are ignored (no result produced)

XA1{⍺}XA2 XA1 (XA2 is ignored)

XA1{⍵}XA2 XA2 (XA1 is ignored)

XA1{⍺ ⍵}XA2 XA1 and XA2 as a two item vector (XA1 XA2)

{0}XA 0 irrespective of XA

{0}¨XA 0 corresponding to each item of XA

,/PV
The enclose of the items of PV (which must be of depth 2)
catenated along their last axes

⍪/PV
The enclose of the items of PV (which must be of depth 2)
catenated along their first axes

⊃⌽XA The item in the top right of XA (⎕ML<2)

↑⌽XA The item in the top right of XA (⎕ML≥2)

⊃⌽,XA The item in the bottom right of XA (⎕ML<2)

↑⌽,A The item in the bottom right of XA (⎕ML≥2)

Chapter 1: Introduction 30

Idiom Description

0=⍴XV 1 if XV has a shape of zero, 0 otherwise

0=⍴⍴XA 1 if XA has a rank of zero (scalar), 0 otherwise

0=≡XA 1 if XA has a depth of zero (simple scalar), 0 otherwise

XM1
{(↓⍺)⍳↓⍵}XM2

A simple vector comprising as many items as there are
rows in XM2, where each item is the number of the first
row in XM1 that matches each row in XM2. See note
below.

↓⍉↑PV

A nested vector comprising vectors that each correspond to
a position in the original vectors of PV – the first vector
contains the first item from each vector in PV, padded to
be the same length as the largest vector, and so on
(⎕ML<2)

↓⍉⊃PV

A nested vector comprising vectors that each correspond to
a position in the original vectors of PV – the first vector
contains the first item from each vector in PV, padded to
be the same length as the largest vector, and so on
(⎕ML≥2)

^\' '=CA
A Boolean mask indicating the leading blank spaces in
each row of CA

+/^\' '=CA The number of leading blank spaces in each row of CA

+/^\BA The number of leading 1s in each row of BA

{(∨\'
'≠⍵)/⍵}CV

CV without any leading blank spaces

{(+/^\'
'=⍵)↓⍵}CV

CV without any leading blank spaces

~∘' '¨↓CA
A nested vector comprising simple character vectors
constructed from the rows of CA (which must be of depth
1) with all blank spaces removed

{(+/∨\'
'≠⌽⍵)↑¨↓⍵}CA

A nested vector comprising simple character vectors
constructed from the rows of CA (which must be of depth
1) with trailing blank spaces removed

⊃∘⍴¨XA The length of the first axis of each item in XA (⎕ML<2)

↑∘⍴¨XA The length of the first axis of each item in XA (⎕ML≥2)

XA1,←XA2
XA1 redefined to be XA1 with XA2 catenated along its last
axis

Chapter 1: Introduction 31

Idiom Description

XA1⍪←XA2
XA1 redefined to be XA1 with XA2 catenated along its
first axis

{(⊂⍋⍵)⌷⍵}XA XA sorted into ascending order

{(⊂⍒⍵)⌷⍵}XA XA sorted into descending order

{⍵[⍋⍵]}XV XV sorted into ascending order

{⍵[⍒⍵]}XV XV sorted into descending order

{⍵[⍋⍵;]}XM XM with the rows sorted into ascending

{⍵[⍒⍵;]}XM XM with the rows sorted into descending order

1=≡XA 1 if XA has a depth of 1 (simple array), 0 otherwise

1=≡,XA
1 if XA has a depth of 0 or 1 (simple scalar, vector, etc.), 0
otherwise

0∊⍴XA 1 if XA is empty, 0 otherwise

~0∊⍴XA 1 if XA is not empty, 0 otherwise

⊣⌿XA The first sub-array along the first axis of XA

⊣/XA The first sub-array along the last axis of XA

⊢⌿XA The last sub-array along the first axis of XA

⊢/XA The last sub-array along the last axis of XA

*○NA Euler's idiom (accurate when NA is a multiple of 0J0.5)

0=⊃⍴XA 1 if XA has an empty first dimension, 0 otherwise (⎕ML<2)

0≠⊃⍴XA
1 if XA does not have an empty first dimension, 0
otherwise (⎕ML<2)

⎕AV⍳CA
Classic version only: The character numbers (atomic vector
index) corresponding to the characters in CA

⌊0.5+NA Round to nearest integer

XA↓⍨←NS
This idiom applies only when NS is negative, when it
removes the last -NS items from XA along its leading axis.
See note below.

{(⊂⍋⍵)⌷⍵}
{(⊂⍒⍵)⌷⍵}

These idioms provide the fastest way to sort arrays of any
rank

Chapter 1: Introduction 32

Notes
/⍳ and /⍳⍴, as well as providing an execution time advantage, reduce
intermediate workspace usage and, consequently, the incidence of memory
compactions and the likelihood of a WS FULL.

NA⊃¨⊂XV is implemented as XV[NA], which is significantly faster. The two are
equivalent but the former now has no performance penalty.

,/ is special-cased only for vectors of vectors or scalars. Otherwise, the expression
is evaluated as a series of concatenations. Recognition of this idiom turns join from
an n-squared algorithm into a linear one. In other words, the improvement factor is
proportional to the size of the argument vector.

⊃⌽ and ⊃⌽, now take constant time. Without idiom recognition, the time taken
depends linearly on the number of items in the argument.

0=≡ takes a small constant time. Without idiom recognition, the time taken would
depend on the size and depth of the argument, which in the case of a deeply
nested array could be significant.

↓⍉↑ is special-cased only for a vector of nested vectors, each of whose items is of
the same length.

{(↓⍺)⍳↓⍵} can accommodate much larger matrices than its constituent
primitives. It is particularly effective when bound with a left argument using the
compose operator:

find←mat∘{(↓⍺)⍳↓⍵} ⍝ find rows in mat table

In this case, the internal hash table for mat is retained so that it does not need to
be generated each time the monadic derived function find is applied to a matrix
argument.

{(∨\' '≠⍵)/⍵} and {(+/^\' '=⍵)↓⍵} are two codings of the same idiom.
Both use the same C code for evaluation.

~∘' '¨↓ typically takes a character matrix argument and returns a vector of
character vectors from which all blanks have been removed. An example might be
the character matrix of names returned by the system function ⎕NL. In general, this
idiom accommodates character arrays of any rank.

{(+/∨\' '≠⌽⍵)↑¨↓⍵} typically takes a character matrix argument and returns a
vector of character vectors. Any embedded blanks in each row are preserved but
trailing blanks are removed. In general, this idiom accommodates character arrays
of any rank.

Chapter 1: Introduction 33

⊃∘⍴¨A (⎕ML<2) and ↑∘⍴¨A (⎕ML>2) avoid having to create an intermediate
nested array of shape vectors.

For an array of vectors, this idiom quickly returns a simple array of the length of
each vector.

⊃∘⍴¨ 'Hi' 'Pete' ⍝ Vector Lengths
2 4

For an array of matrices, it returns a simple array of the number of rows in each
matrix.

⊃∘⍴¨⎕CR¨↓⎕NL 3 ⍝ Lines in functions
5 21...

A,←A and A⍪←A optimise the catenation of an array to another array along the last
and first dimension respectively.

Among other examples, this idiom optimises repeated catenation of a scalar or
vector to an existing vector.

props,←⊂ 'Posn' 0 0
props,←⊂'Size' 50 50
vector,←2+4

Note that the idiom is not applied if the value of vector V is shared with another
symbol in the workspace, as illustrated in the following examples:

Example 1: the idiom is used to perform the catenation to V1.

V1←⍳10
V1,←11

Example 2: the idiom is not used to perform the catenation to V1, because its
value is at that point shared with V2.

V1←⍳10
V2←V1
V1,←11

Example 3: the idiom is not used to perform the catenation to V in Join[1]
because its value is, at that point, shared with the array used to call the function.

∇ V←V Join A
[1] V,←A

∇
(⍳10) Join 11

1 2 3 4 5 6 7 8 9 10 11

Chapter 1: Introduction 34

⊢⌿XA, ⊢/XA, ⊣⌿XA, and ⊣/XA return the first/last rank (0⌈¯1+⍴⍴A) sub-array
along the first/last axis of XA. For example, if V is a vector, then:

⊣/V First item of vector

⊢/V Last item of vector

Similarly, if M is a matrix, then:

⊣⌿M First row of matrix

⊣/M First column of matrix

⊢⌿M Last row of matrix

⊢/M Last column of matrix

The idiom generalises uniformly to higher-rank arrays.

Euler's idiom *○NA produces accurate results for right argument values that are a
multiple of 0J0.5. This is so that Euler's famous identity 0=1+*○0J1 holds,
despite pi being represented as a floating point number.

For clarification; XA↓⍨←NS. If NS is ¯3 then the idiom removes the last -¯3 (i.e.
3) items.

The idiom XM1{(↓⍺)⍳↓⍵}XM2 is still recognised, but since Version 14.0 is no
faster than XM1⍳XM2.

Parallel Execution
If your computer has more than one CPU or is a multi-core processor, then the
scalar dyadic functions ÷, ≥, =, ≤, ⍟, |, !, ○, ∨ and ∧ will, when applied to arrays
with a sufficiently large number of elements, execute in parallel in separate system
threads.

For example, if you have a computer with 4 cores (either real or virtual) and
execute an expression such as (A÷B) where A and/or B contain more than 32,768
elements, then Dyalog will start 4 separate threads, each performing the division
on ¼ of the elements of the array(s) and simultaneously creating the corresponding
¼ of the result array. The threads are only started once, and are reused for
subsequent multi-threaded operations.

The maximum number of threads to use can be controlled using 1111⌶, and the
parallel execution threshold is changed using 1112⌶. These "tuning" I-beams
should be considered experimental, and may be changed or replaced in a future
release. (See Language Reference Guide: Number of Threads and Parallel
Execution Threshold).

Chapter 1: Introduction 35

Note that these scalar dyadic functions are not multi-threaded when applied to
arrays of Boolean or integer values, they are also not multi-threaded for +, - or ×
when applied to arrays of 64 bits floating (type 645). Tests show that the overhead
of preparing such arrays for multi-threaded operations outweigh the performance
benefits.

Complex Numbers
A complex number is a number consisting of a real and an imaginary part which is
usually written in the form a+ bi, where a and b are real numbers, and i is the
standard imaginary unit with the property i2= −1.

Dyalog APL adopts the J notation introduced in IBM APL2 to represent the value
of a complex number which is written as aJb or ajb (without spaces). The former
representation (with a capital J) is always used to display a value.

Notation
2+¯1*.5

2J1

.3j.5
0.3J0.5

1.2E5J¯4E¯4
120000J¯0.0004

Arithmetic
The arithmetic primitive functions handle complex numbers in the appropriate
way.

2j3+.3j.5 ⍝ (a+bi)+(c+di) = (a+c)+(b+d)i
2.3J3.5

2j3-.3j5 ⍝ (a+bi)-(c+di) = (a-c)+(b-d)i
1.7J¯2

2j3×.3j.5 ⍝ (a+bi)(c+di)= ac+bci+adi+bdi2
⍝ = (ac-bd)+(bc+ad)i

¯0.9J1.9

The absolute value, or magnitude of a complex number is naturally obtained using
the Magnitude function

|3j4
5

Chapter 1: Introduction 36

Monadic + of a complex number (a+bi) returns its conjugate (a-bi) ...

+3j4
3J¯4

... which when multiplied by the complex number itself, produces the square of its
magnitude.

3j4×3j¯4
25

Furthermore, adding a complex number and its conjugate produces a real number:

3j4+3j¯4
6

The famous Euler's Identity may be expressed as follows:

1+*○0j1 ⍝ Euler Identity
0

Circular functions
The basic set of circular functions X○Y cater for complex values in Y, while the
following extended functions provide specific features for complex arguments.
Note that a and b are the real and imaginary parts of Y respectively and θ is the
phase of Y..

(-X) ○ Y X X ○ Y

-8○Y 8 (-1+Y*2)*0.5

Y 9 a

+Y 10 |Y

Y×0J1 11 b

*Y×0J1 12 θ

Note that 9○Y and 11○Y return the real and imaginary parts of Y respectively:

9 11○3.5J¯1.2
3.5 ¯1.2

9 11∘.○3.5J¯1.2 2J3 3J4
3.5 2 3

¯1.2 3 4

Chapter 1: Introduction 37

Comparison
In comparing two complex numbers X and Y, X=Y is 1 if the magnitude of X-Y
does not exceed ⎕CT times the larger of the magnitudes of X and Y; geometrically,
X=Y if the number smaller in magnitude lies on or within a circle centred on the
one with larger magnitude, having radius ⎕CT times the larger magnitude.

As with real values, complex values sufficiently close to Boolean or integral
values are accepted by functions which require Boolean or integral values. For
example:

2j1e¯14 ⍴ 12
12 12

0 ⍱ 1j1e¯15
0

Note that Dyalog APL always stores complex numbers as a pair of 64-bit binary
floating-point numbers, regardless of the setting of ⎕FR. Comparisons between
complex numbers and decimal floating-point numbers will require conversion of
the decimal number to binary to allow the comparison. When ⎕FR=1287,
comparisons are always subject to ⎕DCT, not ⎕CT - regardless of the data type
used to represent a number.

This only really comes into play when determining whether the imaginary part of a
complex number is so small that it can be considered to be on the real line.
However, Dyalog recommends that you do not mix the use of complex and
decimal numbers in the same component of an application.

Chapter 1: Introduction 38

128 Bit Decimal Floating-Point Support

Introduction
The original IEE-754 64-bit binary floating point (FP) data type (also known as
type number 645), that is used internally by Dyalog APL to represent floating-
point values, does not have sufficient precision for certain financial computations –
typically involving large currency amounts. The binary representation also causes
errors to accumulate even when all values involved in a calculation are "exact"
(rounded) decimal numbers, since many decimal numbers cannot be accurately
represented regardless of the precision used to hold them. To reduce this problem,
Dyalog APL includes support for the 128-bit decimal data type described by IEEE-
754-2008 as an alternative representation for floating-point values.

System Variable: Floating-point
Representation
Computations using 128-bit decimal numbers require twice as much space for
storage, and run more than an order of magnitude more slowly on platforms which
do not provide hardware support for the type. At this time, hardware support is
only available from IBM (POWER 6 chips onwards, and recent System z
mainframes). Even with hardware support, a slowdown of a factor of 4 can be
expected. For this reason, Dyalog allows users to decide whether they need the
higher-precision decimal representation, or prefer to stay with the faster and smaller
binary representation.

The system variable ⎕FR (for Floating-point Representation) can be set to the
value 645 (the installed default) to indicate 64-bit binary FP, or 1287 for 128-bit
decimal FP. The default value of ⎕FR is configurable.

Simply put, the value of ⎕FR decides the type of the result of any floating-point
calculation that APL performs. In other words, when entered into the session:

⎕FR = ⎕DR 1.234 ⍝ Type of a floating-point constant
⎕FR = ⎕DR 3÷4 ⍝ Type of any floating-point result

⎕FR has workspace scope, and may be localised. If so, like most other system
variables, it inherits its initial value from the global environment.

Chapter 1: Introduction 39

However: Although ⎕FR can vary, the system is not designed to allow "seamless"
modification during the running of an application and the dynamic alteration of
⎕FR is not recommended. Strange effects may occur. For example, the type of a
constant contained in a line of code (in a function or class), will depend on the
value of ⎕FR when the function is fixed. Similarly, a constant typed into a line in
the Session is evaluated using the value of ⎕FR that pertained before the line is
executed. Thus, it would be possible for the first line of code above to return 0, if
it is in the body of a function. If the function was edited and while suspended and
execution is resumed, the result would become 1. Also note:

⎕FR←1287
x←1÷3

⎕FR←645
x=1÷3

1

The decimal number has 17 more 3s. Using the tolerance which applies to binary
floats (type 645), the numbers are equal. However, the "reverse" experiment yields
0, as tolerance is much narrower in the 128-bit universe:

⎕FR←645
x←1÷3

⎕FR←1287
x=1÷3

0

Since ⎕FR can vary, it will be possible for a single workspace to contain floating-
point values of both types (existing variables are not converted when ⎕FR is
changed). For example, an array that has just been brought into the workspace from
external storage may have a different type from ⎕FR in the current namespace.
Conversion (if necessary) will only take place when a new floating-point array is
generated as the result of "a calculation". The result of a computation returning a
floating-point result will not depend on the type of the arrays involved in the
expression: ⎕FR at the time when a computation is performed decides the result
type, alone.

Structural functions generally do NOT change the type, for example:

⎕FR←1287
x←1.1 2.2 3.3

⎕FR←645
⎕dr x

1287
⎕dr 2↑x

1287

Chapter 1: Introduction 40

128-bit decimal numbers not only have greater precision (roughly 34 decimal
digits); they also have significantly larger range- from ¯1E6145 to 1E6145. Loss
of precision is accepted on conversion from 645 to 1287, but the magnitude of a
number may make the conversion impossible, in which case a DOMAIN ERROR is
issued:

⎕FR←1287
x←1E1000

⎕FR←645
x+0

DOMAIN ERROR

WARNING: The use of COMPLEX numbers when ⎕FR is 1287 is not
recommended, because:

l any 128-bit decimal array into which a complex number is inserted or
appended will be forced in its entirety into complex representation,
potentially losing precision

l all comparisons are done using ⎕DCT when ⎕FR is 1287, and this is
equivalent to 0 for complex numbers.

Conversion between Decimal and Binary
Conversion of data from Binary to Decimal is logically equivalent to formatting,
and the reverse conversion is equivalent to evaluating input. These operations are
performed according to the same rules that are used when formatting (and
evaluating) numbers with ⎕PP set to 17 (guaranteeing that the decimal value can
be converted back to the same binary bit pattern). Because the precision of decimal
floating-point numbers is much higher, there will always be a large number of
potential decimal values which map to the same binary number: As with
formatting, the rule is that the SHORTEST decimal number which maps to a
particular binary value will be used as its decimal representation.

Data in component files will be stored without conversion, and only converted
when a computation happens. It should be stored in decimal form if it will
repeatedly be used by application code in which ⎕FR has the value 1287. Even in
applications which use decimal floating point everywhere, reading old component
files containing arrays of type 645, or receiving data via ⎕NA, the .NET interface or
other external sources, will allow binary floating-point values to enter the system
and require conversion.

Chapter 1: Introduction 41

Decimal Comparison Tolerance
When ⎕FR has the value 1287, the system variable ⎕DCT will be used to specify
comparison tolerance. The default value of ⎕DCT is 1E¯28, and the maximum
value is 2.3283064365386962890625E¯10 (the value is chosen to avoid
fuzzy comparison of 32-bit integers).

Name Association and Floating-point
Values
⎕NA supports the data type "D" to represent the Densely Packed Decimal (DPD)
form of 128-bit decimal numbers, as specified by the IEEE-754 2008 standard.
Dyalog has decided to use DPD, which is the format used by IBM for hardware
support, on ALL platforms, although "Binary Integer Decimal" (BID) is the format
that Intel libraries use to implement software libraries to do decimal arithmetic.
Experiments have shown that the performance of 128-bit DPD and BID libraries
are very similar on Intel platforms. In order to avoid the added complication of
having two internal representations, Dyalog has elected to go with the hardware
format, which is expected to be adopted by future hardware implementations.

The support libraries for writing APs and DLLs include new functions to extract
the contents of a value of type D as a string or double-precision binary "float" –
and convert data to D format.

Decimal Floats and Microsoft.NET
The Microsoft.NET framework contains a type named System.Decimal, which
implements decimal floating-point numbers. However, it uses a different internal
format from that defined by IEEE-754 2008.

Dyalog APL includes a Microsoft.NET class (called Dyalog.Dec128), which will
perform arithmetic on data represented using the "Binary Integer Decimal" format.
All computations performed by the Dyalog.Dec128 class will produce exactly the
same results as if the computation was performed in APL. A "DCT" property
allows setting the comparison tolerance to be used in comparisons, Ceiling/Floor,
etc.).

Chapter 1: Introduction 42

The Dyalog class is modelled closely after the existing System.Decimal type,
providing the same methods (Add, Ceiling, Compare, CompareTo, Divide, Equals,
Finalize, Floor, FromOACurrency, GetBits, GetHashCode, GetType, GetTypeCode,
MemberwiseClone, Multiply, Negate, Parse, Remainder, Round, Subtract, To*,
Truncate, TryParse) and operators (Addition, Decrement, Division, Equality,
Explicit, GreaterThan, GreaterThanOrEqual, Implicit, Increment, Inequality,
LessThan, LessThanOrEqual, Modulus, Multiply, Subtraction, UnaryNegation,
UnaryPlus).

The "bridge" between Dyalog and .NET is able to cast floating-point numbers to or
from System.Double, System.Decimal and Dyalog.Dec128 (and perform all other
reasonable casts to integer types etc.). Casting a Dyalog.Dec128 to or from strings
will perform a "lossless" conversion.

Incoming .NET data types VT_DECIMAL (96-bit integer) and VT_CY (currency
value represented by a 64-bit two's complement integer, scaled by 10,000) are
converted to 126-bit decimal numbers (DECFs). This conversion is performed
independently of the value of ⎕FR.

If you want to perform arithmetic on values imported in this way, then you should
set ⎕FR to 1287, at least for the duration of the calculations.

Note that the .NET interface converts System.Decimal to DECFs but does not
convert System.Int64 to DECFs.

Namespaces
Namespace is a (class 9) object in Dyalog APL. Namespaces are analogous to
nested workspaces.

'Flat' APL Workspace Workspace with Namespaces
.OLD-------------------. .NEW-------------------.
		FOO MAT VEC						
DISPLAY		.Util----------.						
			DISPLAY					
FOO MAT VEC			...					
		'--------------'						
WsDoc_Init		.WsDoc-------------.						
WsDoc_Xref			Init .prt-..fmt--.					
WsDoc_Tree				Init		line		
WsDoc_prt_init			Tree					
WsDoc_current_page			Xref	page				
...			'----''-----'					
		'------------------'						
'----------------------' '----------------------'

They provide the same sort of facility for workspaces as directories do for
filesystems. The analogy, based on DOS, might prove helpful:

Chapter 1: Introduction 43

Operation Windows Namespace

Create mkdir)NS or ⎕NS

Change cd)CS or ⎕CS

Relative name dir1\dir\file NS1.NS2.OBJ

Absolute name \file\file #.NS.OBJ

Name separator \ .

Top (root) object \ #

Parent object .. ##

Namespaces bring a number of major benefits:

They provide lexical (as opposed to dynamic) local names. This means that a
defined function can use local variables and functions which persist when it exits
and which are available next time it is called.

Just as with the provision of directories in a filing system, namespaces allow us to
organise the workspace in a tidy fashion. This helps to promote an object oriented
programming style.

APL's traditional name-clash problem is ameliorated in several ways:

l Workspaces can be arranged so that there are many fewer names at each
namespace level. This means that when copying objects from saved
workspaces there is a much reduced chance of a clash with existing names.

l Utility functions in a saved workspace may be coded as a single namespace
and therefore on being copied into the active workspace consume only a
single name. This avoids the complexity and expense of a solution which is
sometimes used in 'flat' workspaces, where such utilities dynamically fix
local functions on each call.

l In flat APL, workspace administration functions such as WSDOC must share
names with their subject namespace. This leads to techniques for trying to
avoid name clashes such as using obscure name prefixes like '⍙⍙L1' This
problem is now virtually eliminated because such a utility can operate
exclusively in its own namespace.

The programming of GUI objects is considerably simplified.

l An object's callback functions may be localised in the namespace of the
object itself.

l Static variables used by callback functions to maintain information between
calls may be localised within the object.

This means that the object need use only a single name in its namespace.

Chapter 1: Introduction 44

Namespace Syntax
Names within namespaces may be referenced explicitly or implicitly. An explicit
reference requires that you identify the object by its full or relative pathname using
a '.' syntax; for example:

X.NUMB ← 88

sets the variable NUMB in namespace X to 88.

88 UTIL.FOO 99

calls dyadic function FOO in namespace UTIL with left and right arguments of 88
and 99 respectively. The interpreter can distinguish between this use of '.' and
its use as the inner product operator, because the leftmost name: UTIL is a (class 9)
namespace, rather than a (class 3) function.

The general namespace reference syntax is:

SPACE . SPACE . (...) EXPR

Where SPACE is an expression which resolves to a namespace reference, and EXPR
is any APL expression to be resolved in the resulting namespace.

There are two special space names:

is the top level or 'Root' namespace.

is the parent or space containing the current namespace.

⎕SE is a system namespace which is preserved across workspace load and clear.

Examples

WSDOC.PAGE.NO +← 1 ⍝ Increment WSDOC page count

#.⎕NL 2 ⍝ Variables in root space

UTIL.⎕FX 'Z←DUP A' 'Z←A A' ⍝ Fix remote function

##.⎕ED'FOO' ⍝ Edit function in parent space

⎕SE.RECORD ← PERS.RECORD ⍝ Copy from PERS to ⎕SE

UTIL.(⎕EX ⎕NL 2) ⍝ Expunge variables in UTIL

(⊃⎕SE #).(⍎⊃↓⎕NL 9).(⎕NL 2) ⍝ Vars in first ⎕SE
⍝ namespace.

UTIL.⍎STRING ⍝ Execute STRING in UTIL space

Chapter 1: Introduction 45

You may also reference a function or operator in a namespace implicitly using the
mechanism provided by ⎕EXPORT (See Language Reference Guide: Export) and
⎕PATH. If you reference a name that is undefined in the current space, the system
searches for it in the list of exported names defined for the namespaces specified by
⎕PATH. See Language Reference Guide: Search Path for further details.

Notice that the expression to the right of a dot may be arbitrarily complex and will
be executed within the namespace or ref to the left of the dot.

X.(C←A×B)
X.C

10 12 14
16 18 20

NS1.C
10 12 14
16 18 20

Summary
Apart from its use as a decimal separator (3.14), '.' is interpreted by looking at
the type or class of the expression to its left:

Template Interpretation Example

∘. Outer product 2 3 ∘.× 4 5

function. Inner product 2 3 +.× 4 5

ref. Namespace reference 2 3 x.foo 4 5

array. Reference array expansion (x y).⎕nc⊂'foo'

Namespace Reference Evaluation
When the interpreter encounters a namespace reference, it:

1. Switches to the namespace.
2. Evaluates the name.
3. Switches back to the original namespace.

If for example, in the following, the current namespace is #.W, the interpreter
evaluates the line:

A ← X.Y.DUP MAT

Chapter 1: Introduction 46

in the following way:

1. Evaluate array MAT in current namespace W to produce argument for
function.

2. Switch to namespace X.Y within W.
3. Evaluate function DUP in namespace W.X.Y with argument.
4. Switch back to namespace W.
5. Assign variable A in namespace W.

Namespaces and Localisation
The rules for name resolution have been generalised for namespaces.

In flat APL, the interpreter searches the state indicator to resolve names referenced
by a defined function or operator. If the name does not appear in the state
indicator, then the workspace-global name is assumed.

With namespaces, a defined function or operator is evaluated in its 'home'
namespace. When a name is referenced, the interpreter searches only those lines of
the state indicator which belong to the home namespace. If the name does not
appear in any of these lines, the home namespace-global value is assumed.

For example, if #.FN1 calls XX.FN2 calls #.FN3 calls XX.FN4, then:

FN1:
is evaluated in #
can see its own dynamic local names
can see global names in #

FN2:
is evaluated in XX
can see its own dynamic local names
can see global names in XX

FN3:
is evaluated in #
can see its own dynamic local names
can see dynamic local names in FN1
can see global names in #

FN4:
is evaluated in XX
can see its own dynamic local names
can see dynamic local names in FN2
can see global names in XX

Chapter 1: Introduction 47

The following picture illustrates how APL looks down the stack to find names:

│ │ │
│ a+b+c │ │ [8] h references a, b and c
│ │ │ │ │ │
│ ∇h;a │ │ │ │ [7] h localises a
│ │ │ │ │
│ │ │ │ │ [6] g calls X.h
│ │ │ │ │
│ │ │ │ a+b+c │ [5] g references a, b and c
│ │ │ │ │ │ │ │
│ │ │ │ ∇g;a;│ c │ [4] g localises a and c
│ │ │ │ │ │
│ │ │ │ │ │ [3] f calls Y.g

↑ │ │ │ │ │ │
s │ a+b+c │ │ │ [2] f references a, b and c
t │ │ │ │ │ │ │
a │ ∇f;a;b │ │ │ │ [1] f localises a and b
c │ │ │ │ │
k │ a b c │ a b c │ [0] global names a, b and c

└X──────────┴Y──────────┘ in namspaces X and Y

The above diagram represents the SI stack, growing upwards from two namespaces
X and Y, which each have three global names a, b and c.

1. Function f in X localises names a and b.
2. Function f references names a, b and c.

∇ f;a;b
[1] a+b+c
[2] Y.g

The interpreter looks down the stack and finds local names a and b in f's
header and c in namespace X.

3. Function f calls function g in namespace Y.
4. Function g in Y localises names a and c.
5. Function g references names a, b and c.

∇ g;a;c
[1] a+b+c
[2] X.h

The interpreter looks down the stack and finds local names a and c in g's
header and b in namespaces Y.

6. Function g calls function h in namespace X.
7. Function h in X localises name a.
8. Function h references names a, b and c.

∇ h;a
[1] a+b+c

Chapter 1: Introduction 48

The interpreter looks down the stack and finds local name a in h's header; b
in f's header; and c in namespace X.

Namespace References
A namespace reference, or ref for short, is a unique data type that is distinct from
and in addition to number and character.

Any expression may result in a ref, but the simplest one is the namespace itself:

)NS NS1 ⍝ Make a namespace called NS1
NS1.A←1 ⍝ and populate it with variables A
NS1.B←2 3⍴⍳6 ⍝ and B

NS1 ⍝ expression results in a ref
#.NS1

You may assign a ref; for example:

X←NS1
X

#.NS1

In this case, the display of X informs you that X refers to the named namespace
#.NS1.

You may also supply a ref as an argument to a defined function or a dfn:

∇ FOO ARG
[1] ARG

 ∇

FOO NS1
#.NS1

The name class of a ref is 9.

⎕NC 'X'
9

You may use a ref to a namespace anywhere that you would use the namespace
itself. For example:

X.A
1

X.B
1 2 3
4 5 6

Chapter 1: Introduction 49

Notice that refs are references to namespaces, so that if you make a copy, it is the
reference that is copied, not the namespace itself. This is sometimes referred to as a
shallow as opposed to a deep copy. It means that if you change a ref, you actually
change the namespace that it refers to.

X.A+←1
X.A

2
NS1.A

2

Similarly, a ref passed to a defined function is call-by-reference, so that
modifications to the content or properties of the argument namespace using the
passed reference persist after the function exits. For example:

∇ FOO nsref
[1] nsref.B+←nsref.A

∇

FOO NS1
NS1.B

3 4 5
6 7 8

FOO X
NS1.B

5 6 7
8 9 10

Notice that the expression to the right of a dot may be arbitrarily complex and will
be executed within the namespace or ref to the left of the dot.

X.(C←A×B)
X.C

10 12 14
16 18 20

NS1.C
10 12 14
16 18 20

Unnamed Namespaces
The monadic form of ⎕NS makes a new (and unique) unnamed namespace and
returns a ref to it.

One use of unnamed namespaces is to represent hierarchical data structures; for
example, a simple employee database:

Chapter 1: Introduction 50

The first record is represented by JOHN which is a ref to an unnamed namespace:

JOHN←⎕NS ''
JOHN

#.[Namespace]

JOHN.FirstName←'John'
JOHN.FirstName

John

JOHN.LastName←'Smith'
JOHN.Age←50

Data variables for the second record, PAUL, can be established using strand, or
vector, assignment:

PAUL←⎕NS ''
PAUL.(FirstName LastName Age←'Paul' 'Brown' 44)

The function SHOW can be used to display the data in each record (the function is
split into 2 lines only to fit on the printed page). Notice that its argument is a ref.

∇ R←SHOW PERSON
[1] R←PERSON.FirstName,' ',PERSON.LastName
[2] R, ←' is ',⍕PERSON.Age

∇

SHOW JOHN
John Smith is 50

SHOW PAUL
Paul Brown is 44

An alternative version of the function illustrates the use of the :With :EndWith
control structure to execute an expression, or block of expressions, within a
namespace:

∇ R←SHOW1 PERSON
[1] :With PERSON
[2] R←FirstName,' ',LastName,' is ',(⍕Age)
[3] :EndWith

∇

SHOW1 JOHN
John Smith is 50

In this case, as only a single expression is involved, it can be expressed more
simply using parentheses.

Chapter 1: Introduction 51

∇ R←SHOW2 PERSON
[1] R←PERSON.(FirstName,' ',LastName,' is ',(⍕Age))

∇
SHOW2 PAUL

Paul Brown is 44

Dfns also accept refs as arguments:

SHOW3←{
⍵.(FirstName,' ',LastName,' is ',⍕Age)

}

SHOW3 JOHN
John Smith is 50

Arrays of Namespace References
You may construct arrays of refs using strand notation, catenate (,) and reshape
(⍴).

EMP←JOHN PAUL
⍴EMP

2

EMP
#.[Namespace] #.[Namespace]

Like any other array, an array of refs has name class 2:

⎕NC 'EMP'
2

Expressions such as indexing and pick return refs that may in turn be used as
follows:

EMP[1].FirstName
John

(2⊃EMP).Age
44

The each (¨) operator may be used to apply a function to an array of refs:

SHOW¨EMP
John Smith is 50 Paul Brown is 44

An array of namespace references (refs) to the left of a '.' is expanded according to
the following rule, where x and y are refs, and exp is an arbitrary expression:

(x y).exp → (x.exp)(y.exp)

Chapter 1: Introduction 52

If exp evaluates to a function, the items of its argument array(s) are distributed to
each referenced function. In the dyadic case, there is a 3-way distribution among:
left argument, referenced functions and right argument.

Monadic function f:

(x y).f d e → (x.f d)(y.f e)

Dyadic function g:

a b (x y).g d e → (a x.g d)(b y.g e)

An array of refs to the left of an assignment arrow is expanded thus:

(x y).a←c d → (x.a←c)(y.a←d)

Note that the array of refs can be of any rank. In the limiting case of a simple
scalar array, the array construct: refs.exp is identical to the scalar construct:
ref.exp.

Note that the expression to the right of the '.' pervades a nested array of refs to its
left:

((u v)(x y)).exp → ((u.exp)(v.exp))((x.exp)(y.exp))

Note also that with successive expansions (u v).(x y z). ..., the final
number of "leaf" terms is the product of the number of refs at each level.

Examples:

JOHN.Children←⎕NS¨'' ''
⍴JOHN.Children

2
JOHN.Children[1].FirstName←'Andy'
JOHN.Children[1].Age←23

JOHN.Children[2].FirstName←'Katherine'
JOHN.Children[2].Age←19

PAUL.Children←⎕NS¨'' ''
PAUL.Children[1].(FirstName Age←'Tom' 25)
PAUL.Children[2].(FirstName Age←'Jamie' 22)

Chapter 1: Introduction 53

EMP←JOHN PAUL
⍴EMP

2
(⊃EMP).Children.(FirstName Age)

Andy 23 Katherine 19

]display (2⊃EMP).Children.(FirstName Age)
.→----------------------------.
| .→---------. .→-----------. |
	.→--.		.→----.					
		Tom	25			Jamie	22	
	'---'		'-----'					
'∊---------' '∊-----------'								
'∊----------------------------'

EMP.Children ⍝ Is an array of refs
#.[Namespace] #.[Namespace] #.[Namespace] ...

EMP.Children.(FirstName Age)
Andy 23 Katherine 19 Tom 25 Jamie 22

Distributed Assignment
Assignment pervades nested strands of names to the left of the arrow. The
conformability rules are the same as for scalar (pervasive) dyadic primitive
functions such as '+'. The mechanism can be viewed as a way of naming the parts
of a structure.

Examples:

EMP.(FirstName Age)
JOHN 43 PAUL 44

EMP.(FirstName Age)←('Jonathan' 21)('Pauline' 22)

EMP.(FirstName Age)
Johnathan 21 Pauline 22

⍝ Distributed assignment is pervasive
JOHN.Children.(FirstName Age)

Andy 23 Katherine 19

JOHN.Children.(FirstName Age)←('Andrew' 21)('Kate'
9)

JOHN.Children.(FirstName Age)
Andrew 21 Kate 9

Chapter 1: Introduction 54

More Examples:
((a b)(c d))←(1 2)(3 4) ⍝ a←1 ⋄ b←2 ⋄ c←3 ⋄ d←4

((⎕io ⎕ml)vec)←0 ⎕av ⍝ ⎕io←0 ⋄ ⎕ml←0 ⋄ vec←⎕av

(i (j k))+←1 2 ⍝ i+←1 ⋄ j+←2 ⋄ k+←2

⍝ Naming of parts:

((first last) sex (street city state))←n⊃pvec

⍝ Distributed assignment in :For loop:

:For (i j)(k l) :In array

⍝ Ref array expansion:

(x y).(first last)←('John' 'Doe')('Joe' 'Blow')
(f1 f2).(b1 b2).Caption←⊂'OK' 'Cancel'

⍝ Structure rearrangement:
rotate1←{ ⍝ Simple binary tree rotation.

(a b c)d e←⍵
a b(c d e)

}
rotate3←{ ⍝ Compound binary tree rotation.

(a b(c d e))f g←⍵
(a b c)d(e f g)

}

Chapter 1: Introduction 55

Distributed Functions
Namespace ref array expansion syntax applies to functions too.

JOHN.PLOT←{↑⍵⍴¨'⎕'}
JOHN.PLOT ⍳10

⎕
⎕⎕
⎕⎕⎕
⎕⎕⎕⎕
⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

PAUL.PLOT←{(⍵,¨1)⍴¨'⎕'}
PAUL.PLOT ⍳10

⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕

⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕

⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕ ⎕ ⎕

⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕

⎕ ⎕
⎕

EMP.PLOT⊂⍳10 ⍝ (temporary vector of functions)
⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ ⎕

Chapter 1: Introduction 56

(x y).⎕NL 2 3 ⍝ x:vars, y:fns
varx funy

(x y).⎕NL⊂2 3 ⍝ x&y: vars&fns
funx funy
varx vary

(x y).(⎕NL¨)⊂2 3 ⍝ x&y: separate vars&fns
varx funx vary funy

'v'(x y).⎕NL 2 3 ⍝ x:v-vars, y:v-fns
varx

'vf'(x y).⎕NL 2 3 ⍝ x:v-vars, y:f-fns
varx funy

⍝ x:v-vars&fns,
'vf'(x y).⎕NL⊂2 3 ⍝ y:f-vars&fns

varx funy

x.⎕NL 2 3 ⍝ depth 0 ref
funx
varx

(x y).⎕NL⊂2 3 ⍝ depth 1 refs
funx funy
varx vary

((u v)(x y)).⎕NL⊂⊂2 3 ⍝ depth 2 refs
funu funv funx funy
varu varv varx vary

(1 2)3 4(w(x y)z).+1 2(3 4) ⍝ arg distribution.
2 3 5 5 7 8

Chapter 1: Introduction 57

Namespaces and Operators
A function passed as operand to a primitive or defined operator, carries its
namespace context with it. This means that if subsequently, the function operand is
applied to an argument, it executes in its home namespace, irrespective of the
namespace from which the operator was invoked or defined.

Examples

VAR←99 ⍝ #.VAR

)NS X
#.X

X.VAR←77 ⍝ X.VAR
X.⎕FX'Z←FN R' 'Z←R,VAR'

)NS Y
#.Y

Y.VAR←88 ⍝ Y.VAR
Y.⎕FX'Z←(F OP)R' 'Z←F R'

X.FN¨⍳3
1 77 2 77 3 77

X.FN 'VAR:'
VAR: 77

X.FN Y.OP 'VAR:'
VAR: 77

⍎ Y.OP'VAR'
99

Chapter 1: Introduction 58

Serialising Namespaces
The Serialisation of an array is its conversion from its internal representation,
which may contain pointers to other structures in the workspace, into a self-
contained series of bytes. This allows the array to be written to a file, transmitted
over a socket or used in a variety of other ways. The de-serialisation of an array is
the conversion back to an internal format whose content and structure is identical
to the original array.

If an array contains a reference to a namespace or object that is within the same
array, it can be serialised and de-serialised normally.

If an array contains a reference to a namespace or object that is not internal to the
array itself, this presents a problem, which is resolved as follows:

1. If the reference is a direct reference to Root (#) or to ⎕SE, it is serialised as
a reference to that symbol, but the contents of # or ⎕SE are not included.
When the array is de-serialised, this results in a reference to the Root (#) or
⎕SE in the current workspace. The newly reconstituted array is not strictly
identical to the original because the contents of # or ⎕SE may be different.

2. If the reference is to an arbitrary external namespace or object, a copy of
that object is included but its path is discarded. When the array is de-
serialised, the copy is reconstituted as a sibling (i.e. as a child of the same
parent as the de-serialised array). In this case the contents of the external
namespace or object are preserved, but not its path. The newly reconstituted
array is not strictly identical to the original because the path to the external
reference has changed.

3. If however, the external namespace or object itself contains an external
reference, the operation fails with DOMAIN ERROR.

Chapter 1: Introduction 59

The following example uses 220⌶ but applies equally to an array serialised by, for
example ⎕FAPPEND.

Examples:

'A' ⎕NS ''
'B' ⎕NS ''
'C' ⎕NS ''
A.b←B
B.c←C
s←1 (220⌶)A

)erase A B C
)obs

New←0(220⌶)s
New

#.A
New.b

#.B
New.b.c

#.C

)clear
clear ws

'A' ⎕NS ''
'B' ⎕NS ''
'X'⎕NS ''
'X.C'⎕NS ''
A.b←B
B.c←X.C
s←1(220⌶)A

DOMAIN ERROR: Namespace is not self contained
s←1(220⌶)A

∧

Note that a successful 0(220⌶) does not mean that a 1(220⌶) on the result will
succeed. If the original reference was to, say, the MenuBar of ⎕SE you cannot
reconstitute that in #.

Chapter 1: Introduction 60

External Variables
An external variable is a variable whose contents (value) reside not in the
workspace, but in a file. An external variable is associated with a file by the
system function ⎕XT. If at the time of association the file exists, the external
variable assumes its value from the contents of the file. If the file does not exist,
the external variable is defined but a VALUE ERROR occurs if it is referenced
before assignment. Assignment of an array to the external variable or to an
indexed element of the external variable has the effect of updating the file. The
value of the external variable or the value of indexed elements of the external
variable is made available in the workspace when the external variable occurs in
an expression. No special restrictions are placed on the usage of external variables.

Normally, the files associated with external variables remain permanent in that
they survive the APL session or the erasing of the external variable from the
workspace. External variables may be accessed concurrently by several users, or by
different nodes on a network, provided that the appropriate file access controls are
established. Multi-user access to an external variable may be controlled with the
system function ⎕FHOLD between co-operating tasks.

Refer to the sections describing the system functions ⎕XT and ⎕FHOLD in Chapter
6 for further details.

Examples

'ARRAY' ⎕XT 'V'

V←⍳10
V[2] + 5

7

⎕EX'V'

'ARRAY' ⎕XT 'F'
F

1 2 3 4 5 6 7 8 9 10

Chapter 1: Introduction 61

Component Files
A component file is a data file maintained by Dyalog APL. It contains a series of
APL arrays known as components which are accessed by reference to their relative
positions or component number within the file. A set of system functions is
provided to perform a range of file operations. (See Language Reference Guide:
Component Files.) These provide facilities to create or delete files, and to read and
write components. Facilities are also provided for multi-user access including the
capability to determine who may do what, and file locking for concurrent updates.
(See the Dyalog Programming Reference Guide).

Auxiliary Processors
Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL
users with additional facilities. They run as separate tasks, and communicate with
the Dyalog APL interpreter through pipes (UNIX) or via an area of memory
(Windows). Typically, APs are used where speed of execution is critical, such as
in screen management software, or for utility libraries. Auxiliary Processors may
be written in any compiled language, although 'C' is preferred and is directly
supported.

When an Auxiliary Processor is invoked from Dyalog APL, one or more external
functions are fixed in the active workspace. Each external function behaves as if it
was a locked defined function, but is in effect an entry point into the Auxiliary
Processor. An external function occupies only a negligible amount of workspace.

Although Auxiliary Processors are still supported, Dyalog recommends that
DLLs/shared libraries, called via the ⎕NA interface should be used on all platforms
in future, and that existing APs are converted to DLLs/shared libraries.

Chapter 1: Introduction 62

Chapter 2: Defined Functions & Operators 63

Chapter 2:

Defined Functions & Operators

A defined function is a program that takes 0, 1, or 2 arrays as arguments and may
produce an array as a result. A defined operator is a program that takes 1 or 2
functions or arrays (known as operands) and produces a derived function as a
result. To simplify the text, the term operation is used within this chapter to mean
function or operator.

Traditional Functions and Operators
Tradtional Functions and Operators are the original user-defined functions and
operators that are part of the APL standard. They are referred to herein as
Traditional or TradFns to distinguish them from Dfns and Dops which are unique
to Dyalog.

TradFns may be defined and edited using the Dyalog Editor or may be instantiated
from an array containing source code using the system function ⎕FX. The converse
system functions ⎕CR, ⎕VR, ⎕NR return the original source code.

A defined function or operators is composed of lines. The first line (line 0) is
called the header. Remaining lines are APL statements, called the body.

The header consists of the following parts:

1. its model syntactical form,
2. an optional list of local names, each preceded by a semi-colon (;) character,
3. an optional comment, preceded by the symbol ⍝.

Only the model is required. If local names and comments are included, they must
appear in the prescribed order.

Chapter 2: Defined Functions & Operators 64

Model Syntax
The model for the defined operation identifies the name of the operation, its
valence, and whether or not an explicit result may be returned. Valence is the
number of explicit arguments or operands, either 0, 1 or 2; whence the operation is
termed NILADIC, MONADIC or DYADIC respectively. Only a defined function
may be niladic. There is no relationship between the valence of a defined
operator, and the valence of the derived function which it produces. Defined
functions and derived functions produced by defined operators may be ambivalent,
i.e. may be executed monadically with one argument, or dyadically with two. An
ambivalent operation is identified in its model by enclosing the left argument in
braces.

The value of a result-returning function or derived function may be suppressed in
execution if not explicitly used or assigned by enclosing the result in its model
within braces. Such a suppressed result is termed SHY.

The tables below show all possible models for defined functions and operators
respectively.

Defined Functions
Result Niladic Monadic Dyadic Ambivalent

None f f Y X f Y {X} f Y

Explicit R←f R←f Y R←X f Y R←{X} f Y

Suppressed {R}←f {R}←f Y {R}←X f Y {R}←{X} f Y

Note: the right argument Y and/or the result R may be represented by a single
name, or as a blank-delimited list of names surrounded by parentheses. For further
details, see Namelists on page 69.

Derived Functions produced by Monadic Operator
Result Monadic Dyadic Ambivalent

None (A op)Y X(A op)Y {X}(A op)Y

Explicit R←(A op)Y R←X(A op)Y R←{X}(A op)Y

Suppressed {R}←(A op)Y {R}←X(A op)Y {R}←{X}(A op)Y

Chapter 2: Defined Functions & Operators 65

Derived Functions produced by Dyadic Operator
Result Monadic Dyadic Ambivalent

None (A op B)Y X(A op B)Y {X}(A op B)Y

Explicit R←(A op B)Y R←X(A op B)Y R←{X}(A op B)Y

Suppressed {R}←(A op B)Y {R}←X(A op B)Y {R}←{X}(A op B)Y

Statements
A statement is a line of characters understood by APL. It may be composed of:

1. a LABEL (which must be followed by a colon :), or a CONTROL
STATEMENT (which is preceded by a colon), or both,

2. an EXPRESSION (see Expressions on page 16),
3. a SEPARATOR (consisting of the diamond character ⋄ which must separate

adjacent expressions),
4. a COMMENT (which must start with the character ⍝).

Each of the four parts is optional, but if present they must occur in the given order
except that successive expressions must be separated by ⋄. Any characters
occurring to the right of the first comment symbol (⍝) that is not within quotes is a
comment.

Comments are not executed by APL. Expressions in a line separated by ⋄ are taken
in left-to-right order as they occur in the line. For output display purposes, each
separated expression is treated as a separate statement.

Examples

5×10
50

MULT: 5×10
50

MULT: 5×10 ⋄ 2×4
50
8

MULT: 5×10 ⋄ 2×4 ⍝ MULTIPLICATION
50
8

Chapter 2: Defined Functions & Operators 66

Global & Local Names
The following names, if present, are local to the defined operation:

1. the result,
2. the argument(s) and operand(s),
3. additional names in the header line following the model, each name

preceded by a semi-colon character,
4. labels,
5. the argument list of the system function ⎕SHADOW when executed,
6. a name assigned within a dfn.

All names in a defined operation must be valid APL names. The same name may
be repeated in the header line, including the operation name (whence the name is
localised). Normally, the operation name is not a local name.

The same name may not be given to both arguments or operands of a dyadic
operation. The name of a label may be the same as a name in the header line. More
than one label may have the same name. When the operation is executed, local
names in the header line after the model are initially undefined; labels are assigned
the values of line numbers on which they occur, taken in order from the last line to
the first; the result (if any) is initially undefined.

In the case of a defined function, the left argument (if any) takes the value of the
array to the left of the function when called; and the right argument (if any) takes
the value of the array to the right of the function when called. In the case of a
defined operator, the left operand takes the value of the function or array to the left
of the operator when called; and the right operand (if any) takes the value of the
function or array to the right of the operator when called.

During execution, a local name temporarily excludes from use an object of the
same name with an active definition. This is known as LOCALISATION or
SHADOWING. A value or meaning given to a local name will persist only for the
duration of execution of the defined operation (including any time whilst the
operation is halted). A name which is not local to the operation is said to be
GLOBAL. A global name could itself be local to a pendent operation. A global
name can be made local to a defined operation during execution by use of the
system function ⎕SHADOW. An object is said to be VISIBLE if there is a definition
associated with its name in the active environment.

Chapter 2: Defined Functions & Operators 67

Examples

A←1

∇ F
[1] A←10
[2] ∇

F ⍝ <A> NOT LOCALISED IN <F>, GLOBAL VALUE REPLACED
A

10
A←1
)ERASE F

∇ F;A
[1] A←10
[2] ∇

F ⍝ <A> LOCALISED IN <F>, GLOBAL VALUE RETAINED
A

1

Any statement line in the body of a defined operation may begin with a LABEL.
A label is followed by a colon (:). A label is a constant whose value is the
number of the line in the operation defined by system function ⎕FX or on closing
definition mode.

The value of a label is available on entering an operation when executed, and it
may be used but not altered in any expression.

Example

⎕VR'PLUS'
∇ R←{A} PLUS B

[1] →DYADIC ⍴⍨2=⎕NC'A' ⋄ R←B ⋄ →END
[2] DYADIC: R←A+B
[3] END:

∇

1 ⎕STOP'PLUS'

2 PLUS 2

PLUS[1]
DYADIC

2

END
3

Chapter 2: Defined Functions & Operators 68

Locals Lines
Locals Lines are lines in a defined function or operator that serve only to define
local names.

A Locals Line may appear anywhere between line [0] and the first executable
statement in the function or operator. Locals lines may be interspersed with blank
lines and comments. A Locals Line is identified by starting with a semicolon,
prefixed optionally by whitespace. It may contain a comment at the end.

A Locals Line must be of the form ;name;name;name where name is any valid
APL name or localisable system variable. The names are localised on entry to the
function exactly as if they were specified as locals on line [0].

Example

∇ r←foo y;a;b ⍝ some locals
;c;d ⍝ some more locals

(a b c d)←y
r←a+b-c×d

∇

The function foo shown above localises names a, b, c and d (the indentation on
line [1] in this example is entirely optional)

Syntactical errors on Locals Lines are detected when the user attempts to fix the
function using the Editor or ⎕FX and will causes the operation to fail.

Chapter 2: Defined Functions & Operators 69

Namelists
The right argument and the result of a function may be specified in the function
header by a single name or by a Namelist. In this context, a Namelist is a blank-
delimited list of names surrounded by a single set of parentheses.

Names specified in a Namelist are automatically local to the function; there is no
need to localise them explicitly using semi-colons.

If the right argument of a function is declared as a Namelist, the function will only
accept a right argument that is a vector whose length is the same as the number of
names in the Namelist. Calling the function with any other argument will result in
a LENGTH ERROR in the calling statement. Otherwise, the elements of the
argument are assigned to the names in the Namelist in the specified order.

Example:

∇ IDN←Date2IDN(Year Month Day)
[1] 'Year is ',⍕Year
[2] 'Month is ',⍕Month
[3] 'Day is ',⍕Day
[4] ...

∇

Date2IDN 2004 4 30
Year is 2004
Month is 4
Day is 30

Date2IDN 2004 4
LENGTH ERROR

Date2IDN 2004 4
^

Note that if you specify a single name in the Namelist, the function may be called
only with a 1-element vector right argument. If the result of a function is declared
as a Namelist, the values of the names will automatically be stranded together in
the specified order and returned as the result of the function when the function
terminates.

Example:

∇ (Year Month Day)←Birthday age
[1] Year←1949+age
[2] Month←4
[3] Day←30

∇
Birthday 50

1999 4 30

Chapter 2: Defined Functions & Operators 70

Locked Functions & Operators
A defined operation may be locked by the system function ⎕LOCK.

Once locked, and operation may not be displayed or edited and the system
functions ⎕CR, ⎕NR and ⎕VR return empty results.

Stop, trace and monitor settings are cancelled when an operation is locked.

A locked operation may not be suspended, nor may a locked operation remain
pendent when execution is suspended. Instead, the state indicator is cut back to
the point where the locked operation was invoked.

Function Declaration Statements
Function Declaration statements are used to identify the characteristics of a
function in some way.

The following declarative statements are provided.

l :Access
l :Attribute
l :Implements
l :Signature

With one exception, these statements are not executable statements and may
theoretically appear anywhere in the body of the function. However, it is
recommended that you place them at the beginning before any executable
statements. The exception is:

:Implements Constructor <[:Base expr]>

In addition to being declarative (declaring the function to be a Constructor) this
statement also executes the Constructor in the Base Class whether or not it
includes :Base expr. Its position in the code is therefore significant.

Chapter 2: Defined Functions & Operators 71

Access Statement :Access

:Access <Private|Public><Instance|Shared>
:Access <WebMethod>

The :Access statement is used to specify characteristics for functions that
represent Methods in classes (see Methods on page 145). It is also applicable to
Classes and Properties.

Element Description

Private|Public
Specifies whether or not the method is accessible from
outside the Class or an Instance of the Class. The
default is Private.

Instance|Shared
Specifies whether the method runs in the Class or
Instance. The default is Instance.

WebMethod
Specifies that the method is exported as a web
method. This applies only to a Class that implements a
Web Service.

Overridable
Applies only to an Instance Method and specifies that
the Method may be overridden by a Method in a
higher Class. See below.

Override
Applies only to an Instance Method and specifies that
the Method overrides the corresponding Overridable
Method defined in the Base Class. See below

Overridable/Override
Normally, a Method defined in a higher Class replaces a Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it from within the
Base Class.

However, a Method declared as being Overridable is replaced in-situ (i.e.
within its own Class) by a Method of the same name in a higher Class if that
Method is itself declared with the Override keyword. For further information,
see Superseding Base Class Methods on page 148.

Chapter 2: Defined Functions & Operators 72

WebMethod
Note that :Access WebMethod is equivalent to:

:Access Public

:Attribute System.Web.Services.WebMethodAttribute

Attribute Statement :Attribute

:Attribute <Name> [ConstructorArgs]

The :Attribute statement is used to attach .NET Attributes to a Method (or
Class).

Attributes are descriptive tags that provide additional information about
programming elements. Attributes are not used by Dyalog APL but other
applications can refer to the extra information in attributes to determine how these
items can be used. Attributes are saved with the metadata of Dyalog APL .NET
assemblies.

Element Description

Name The name of a .NET attribute

ConstructorArgs Optional arguments for the Attribute constructor

Examples

:Attribute ObsoleteAttribute
:Attribute ObsoleteAttribute 'Don''t use' 1

Chapter 2: Defined Functions & Operators 73

Implements Statement :Implements

The :Implements statement identifies the function to be one of the following
types.

:Implements Constructor <[:Base expr]>
:Implements Destructor
:Implements Method <InterfaceName.MethodName>
:Implements Trigger <name1><,name2,name3,...>
:Implements Trigger *

Element Description

Constructor Specifies that the function is a Class Constructor.

:Base expr
Specifies that the Base Constructor be called with the result
of the expression expr as its argument.

Destructor Specifies that the function is a Class Destructor.

Method
Specifies that the function implements the Method
MethodName whose syntax is specified by Interface
InterfaceName.

Trigger

Identifies the function as a Trigger Function which is
activated by changes to variable name1, name2, and so
forth.
Trigger * specifies a Global Trigger that is activated by the
assignment of any global variable in the same namespace.

Signature Statement :Signature

:Signature <rslttype←><name><arg1type arg1name>,...

This statement identifies the name and signature by which a function is exported
as a method to be called from outside Dyalog APL. Several :Signature statements
may be specified to allow the method to be called with different arguments and/or
to specify a different result type.

Element Description

rslttype Specifies the data type for the result of the method

name Specifies the name of the exported method.

argntype Specifies the data type of the nth parameter

argnname Specifies the name of the nth parameter

Chapter 2: Defined Functions & Operators 74

Argument and result data types are identified by the names of .NET Types which
are defined in the .NET Assemblies specified by ⎕USING or by a :USING
statement.

Examples

In the following examples, it is assumed that the .NET Search Path (defined by
:Using or ⎕USING includes 'System'.

The following statement specifies that the function is exported as a method named
Format which takes a single parameter of type System.Object named Array.
The data type of the result of the method is an array (vector) of type
System.String.

:Signature String[]←Format Object Array

The next statement specifies that the function is exported as a method named
Catenate whose result is of type System.Object and which takes 3
parameters. The first parameter is of type System.Double and is named
Dimension. The second is of type System.Object and is named Arg1. The
third is of type System.Object and is named Arg2.

:Signature Object←Catenate Double Dimension,...
...Object Arg1, Object Arg2

The next statement specifies that the function is exported as a method named
IndexGen whose result is an array of type System.Int32 and which takes 2
parameters. The first parameter is of type System.Int32 and is named N. The
second is of type System.Int32 and is named Origin.

:Signature Int32[]←IndexGen Int32 N, Int32 Origin

The next block of statements specifies that the function is exported as a method
named Mix. The method has 4 different signatures; i.e. it may be called with 4
different parameter/result combinations.

:Signature Int32[,]←Mix Double Dimension, ...
...Int32[] Vec1, Int32[] Vec2

:Signature Int32[,]←Mix Double Dimension,...
... Int32[] Vec1, Int32[] Vec2, Int32 Vec3

:Signature Double[,]←Mix Double Dimension, ...
... Double[] Vec1, Double[] Vec2

:Signature Double[,]←Mix Double Dimension, ...
... Double[] Vec1, Double[] Vec2, Double[]

Vec3

Chapter 2: Defined Functions & Operators 75

Control Structures
Control structures provide a means to control the flow of execution in your APL
programs.

Traditionally, lines of APL code are executed one by one from top to bottom and
the only way to alter the flow of execution is using the branch arrow. So how do
you handle logical operations of the form “If this, do that; otherwise do the other”?

In APL this is often not a problem because many logical operations are easily
performed using the standard array handling facilities that are absent in other
languages. For example, the expression:

STATUS←(1+AGE<16)⊃'Adult' 'Minor'

sets STATUS to 'Adult' if AGE is 16 or more; otherwise sets STATUS to
'Minor'.

Things become trickier if, depending upon some condition, you wish to execute
one set of code instead of another, especially when the code fragments cannot
conveniently be packaged as functions. Nevertheless, careful use of array logic,
defined operators, the execute primitive function and the branch arrow can produce
high quality maintainable and comprehensible APL systems.

Control structures provide an additional mechanism for handling logical operations
and decisions. Apart from providing greater affinity with more traditional
languages, Control structures may enhance comprehension and reduce
programming errors, especially when the logic is complex. Control structures are
not, however, a replacement for the standard logical array operations that are so
much a part of the APL language.

Control Structures are blocks of code in which the execution of APL statements
follows certain rules and conditions. Control structures are implemented using a
set of control words that all start with the colon symbol (:). Control Words are
case-insensitive.

There are a number of different types of control structures defined by the control
words, :If, :While, :Repeat, :For (with the supplementary control words
:In and :InEach), :Select, :With, :Trap, :Hold and :Disposable.
Each one of these control words may occur only at the beginning of an APL
statement and indicates the start of a particular type of control structure.

Within a control structure, certain other control words are used as qualifiers. These
are :Else, :ElseIf, :AndIf, :OrIf, :Until, :Case and :CaseList.

Chapter 2: Defined Functions & Operators 76

A third set of control words is used to identify the end of a particular control
structure. These are :EndIf, :EndWhile, :EndRepeat, :EndFor,
:EndSelect, :EndWith, :EndTrap, :EndHold and :EndDisposable.
Although formally distinct, these control words may all be abbreviated to :End.

Finally, the :GoTo, :Return, :Leave and :Continue control words may be
used to conditionally alter the flow of execution within a control structure.

Control words, including qualifiers such as :Else and :ElseIf, may occur only
at the beginning of a line or expression in a diamond-separated statement. The
only exceptions are :In and :InEach which must appear on the same line
within a :For expression.

Key to Notation
The following notation is used to describe Control Structures within this section:

aexp an expression returning an array,

bexp an expression returning a single Boolean value (0 or 1),

var loop variable used by :For control structure,

code
0 or more lines of APL code, including other (nested) control
structures,

andor

either one or more :AndIf statements, or one or more :OrIf
statements. For further details, see below.

|
.-----------------------.
| |
|<--------------. |<--------------.
| | | |
code | code |
| | | |
| | | |
:AndIf bexp-----' :OrIf bexp------'
| |
|<----------------------'
|

Notes
Code preceding :OrIf and :AndIf

Code that precedes a :OrIf control statement, e.g. code placed between a :If
statement and a subsequent :OrIf, will be executed only if the outer condition is
false. If instead the outer condition is true, there is no need to execute the :OrIf
statement , so it and any preceding lines of code are skipped.

Chapter 2: Defined Functions & Operators 77

Code that precedes a :AndIf control statement, e.g. code placed between a :If
statement and a subsequent :AndIf, will only be executed if the outer condition
is true. If instead the outer condition is false, there is no need to execute the
:AndIf statement , so it and any preceding lines of code are skipped.

The above behaviour may be examined using the Tracer.

A potential use for code before a :OrIf or :AndIf is to prepare for the
conditional test. This preparatory work will only be done if required. For example:

:If x ⍝ if x is false, skip everything up to the :EndIf
y←..⍝ set up stuff for the condition on the next line
:AndIf y

do stuff
:EndIf

Warning

With the exception of a diamondised statement, a control statement that should not
be followed by an expression will generate an error if an expression is supplied.

A line in a function consisting of a control statement followed by a ⋄ and
subsequent expression(s) is not currently disallowed but may exhibit unexpected
behaviour. In particular, the line will not honour ⎕STOP and will not be metered
by ⎕MONITOR. This syntax is not recommended.

If Statement :If bexp

The simplest :If control structure is a single condition of the form:

[1] :If AGE<21
[2] expr 1
[3] expr 2
[5] :EndIf

If the test condition (in this case AGE<21) is true, the statements between the :If
and the :EndIf will be executed. If the condition is false, none of these
statements will be run and execution resumes after the :EndIf. Note that the test
condition to the right of :If must return a single element Boolean value 1 (true)
or 0 (false).

:If control structures may be considerably more complex. For example, the
following code will execute the statements on lines [2-3] if AGE<21 is 1 (true),
or alternatively, the statement on line [6] if AGE<21 is 0 (false).

Chapter 2: Defined Functions & Operators 78

[1] :If AGE<21
[2] expr 1
[3] expr 2
[5] :Else
[6] expr 3
[7] :EndIf

Instead of a single condition, it is possible to have multiple conditions using the
:ElseIf control word. For example:

[1] :If WINEAGE<5
[2] 'Too young to drink'
[5] :ElseIf WINEAGE<10
[6] 'Just Right'
[7] :ElseIf WINEAGE<15
[8] 'A bit past its prime'
[9] :Else
[10] 'Definitely over the hill'
[11] :EndIf

Notice that APL executes the expression(s) associated with the first condition that
is true or those following the :Else if none of the conditions are true.

The :AndIf and :OrIf control words may be used to define a block of
conditions and so refine the logic still further. You may qualify an :If or an
:ElseIf with one or more :AndIf statements or with one or more :OrIf
statements. You may not however mix :AndIf and :OrIf in the same
conditional block. For example:

[1] :If WINE.NAME≡'Chateau Lafitte'
[2] :AndIf WINE.YEAR∊1962 1967 1970
[3] 'The greatest?'
[4] :ElseIf WINE.NAME≡'Chateau Latour'
[5] :Orif WINE.NAME≡'Chateau Margaux'
[6] :Orif WINE.PRICE>100
[7] 'Almost as good'
[8] :Else

[9] 'Everyday stuff'
[10] :EndIf

Please note that in a :If control structure, the conditions associated with each of
the condition blocks are executed in order until an entire condition block
evaluates to true. At that point, the APL statements following this condition block
are executed. None of the conditions associated with any other condition block
are executed. Furthermore, if an :AndIf condition yields 0 (false), it means that
the entire block must evaluate to false so the system moves immediately on to the
next block without executing the other conditions following the failing :AndIf.
Likewise, if an :OrIf condition yields 1 (true), the entire block is at that point
deemed to yield true and none of the following :OrIf conditions in the same
block are executed.

Chapter 2: Defined Functions & Operators 79

:If Statement

|
:If bexp
|
.-------.
| |
| andor
| |
|<------'
|
code
|
|<------------------------------.
| |
.-------.-------. |
| | | |
| :Else :ElseIf bexp |
	.-------.		
		andor	
		<------'	
code code			
<------' `---------------'			
:End[If]			

Chapter 2: Defined Functions & Operators 80

While Statement :While bexp

The simplest :While loop is :

[1] I←0
[2] :While I<100
[3] expr1
[4] expr2
[5] I←I+1
[6] :EndWhile

Unless expr1 or expr2 alter the value of I, the above code will execute lines
[3-4] 100 times. This loop has a single condition; the value of I. The purpose
of the :EndWhile statement is solely to mark the end of the iteration. It acts the
same as if it were a branch statement, branching back to the :While line.

An alternative way to terminate a :While structure is to use a :Until statement.
This allows you to add a second condition. The following example reads a native
file sequentially as 80-byte records until it finds one starting with the string
'Widget' or reaches the end of the file.

[1] I←0
[2] :While I<⎕NSIZE ¯1
[3] REC←⎕NREAD ¯1 82 80
[4] I←I+⍴REC
[5] :Until 'Widget'≡6⍴REC

Instead of single conditions, the tests at the beginning and end of the loop may be
defined by more complex ones using :AndIf and :OrIf. For example:

[1] :While 100>i
[2] :AndIf 100>j
[3] i j←foo i j
[4] :Until 100<i+j
[5] :OrIf i<0
[6] :OrIf j<0

In this example, there are complex conditions at both the start and the end of the
iteration. Each time around the loop, the system tests that both i and j are less
than or equal to 100. If either test fails, the iteration stops. Then, after i and j
have been recalculated by foo, the iteration stops if i+j is equal to or greater
than 100, or if either i or j is negative.

Chapter 2: Defined Functions & Operators 81

:While Statement

|
:While bexp
|
.-------.
| |
| andor
| |
|<------'
|
code
|
.---------------.
| |
:End[While] :Until bexp
| |
| .-------.
| | |
| | andor
| | |
| |<------'
| |
|<--------------'
|

Repeat Statement :Repeat

The simplest type of :Repeat loop is as follows. This example executes lines
[3-5] 100 times. Notice that as there is no conditional test at the beginning of a
:Repeat structure, its code statements are executed at least once.

[1] I←0
[2] :Repeat
[3] expr1
[4] expr2
[5] I←I+1
[6] :Until I=100

You can have multiple conditional tests at the end of the loop by adding :AndIf
or :OrIf expressions. The following example will read data from a native file as
80-character records until it reaches one beginning with the text string 'Widget'
or reaches the end of the file.

[1] :Repeat
[2] REC←⎕NREAD ¯1 82 80
[3] :Until 'Widget'≡6⍴REC
[4] :OrIf 0=⍴REC

Chapter 2: Defined Functions & Operators 82

A :Repeat structure may be terminated by an :EndRepeat (or :End) statement
in place of a conditional expression. If so, your code must explicitly jump out of
the loop using a :Leave statement or by branching. For example:

[1] :Repeat
[2] REC←⎕NREAD ¯1 82 80
[3] :If 0=⍴REC
[4] :OrIf 'Widget'≡6⍴REC
[5] :Leave
[6] :EndIf
[7] :EndRepeat

:Repeat Statement

|
:Repeat
|
code
|
.---------------.
| |
:End[Repeat] :Until bexp
| |
| .-------.
| | |
| | andor
| | |
| |<------'
| |
|<--------------'
|

For Statement :For var :In[Each] aexp

Single Control Variable
The :For loop is used to execute a block of code for a series of values of a
particular control variable. For example, the following would execute lines [2-
3] successively for values of I from 3 to 5 inclusive:

[1] :For I :In 3 4 5
[2] expr1 I
[3] expr2 I
[4] :EndFor

Chapter 2: Defined Functions & Operators 83

The way a :For loop operates is as follows. On encountering the :For, the
expression to the right of :In is evaluated and the result stored. This is the
control array. The control variable, named to the right of the :For, is then
assigned the first value in the control array, and the code between :For and
:EndFor is executed. On encountering the :EndFor, the control variable is
assigned the next value of the control array and execution of the code is performed
again, starting at the first line after the :For. This process is repeated for each
value in the control array.

Note that if the control array is empty, the code in the :For structure is not
executed. Note too that the control array may be any rank and shape, but that its
elements are assigned to the control variable in ravel order.

The control array may contain any type of data. For example, the following code
resizes (and compacts) all your component files

[1] :For FILE :In (↓⎕FLIB '')~¨' '
[2] FILE ⎕FTIE 1
[3] ⎕FRESIZE 1
[4] ⎕FUNTIE 1
[5] :EndFor

You may also nest :For loops. For example, the following expression finds the
timestamp of the most recently updated component in all your component files.

[1] TS←0
[2] :For FILE :In (↓⎕FLIB '')~¨' '
[3] FILE ⎕FTIE 1
[4] START END←2⍴⎕FSIZE 1
[5] :For COMP :In (START-1)↓⍳END-1
[6] TS⌈←¯1↑⎕FREAD FILE COMP
[7] :EndFor
[8] ⎕FUNTIE 1
[9] :EndFor

Multiple Control Variables
The :For control structure can also take multiple variables. This has the effect of
doing a strand assignment each time around the loop.

For example :For a b c :in (1 2 3)(4 5 6), sets a b c←1 2 3, first
time around the loop and a b c←4 5 6, the second time.

Another example is :For i j :In ⍳⍴Matrix, which sets i and j to each row
and column index of Matrix.

Chapter 2: Defined Functions & Operators 84

:InEach Control Word
:For var ... :InEach value ...

In a :For control structure, the keyword :InEach is an alternative to :In.

For a single control variable, the effect of the keywords is identical but for
multiple control variables the values vector is inverted.

The distinction is best illustrated by the following equivalent examples:

:For a b c :In (1 2 3)(3 4 5)(5 6 7)(7 8 9)
⎕←a b c

:EndFor

:For a b c :InEach (1 3 5 7)(2 4 6 8)(3 5 7 9)
⎕←a b c

:EndFor

In each case, the output from the loop is:

1 2 3
3 4 5
5 6 7
7 8 9

Notice that in the second case, the number of items in the values vector is the same
as the number of control variables. A more typical example might be.

:For a b c :InEach avec bvec cvec
...

:EndFor

Here, each time around the loop, control variable a is set to the next item of avec,
b to the next item of bvec and c to the next item of cvec.

:For Statement

|
:For var :In[Each] aexp
|
code
|
:End[For]
|

Chapter 2: Defined Functions & Operators 85

Select Statement :Select aexp

A :Select structure is used to execute alternative blocks of code depending
upon the value of an array. For example, the following displays 'I is 1' if the
variable I has the value 1, 'I is 2' if it is 2, or 'I is neither 1 nor 2'
if it has some other value.

[1] :Select I
[2] :Case 1
[3] 'I is 1'
[4] :Case 2
[5] 'I is 2'
[6] :Else
[7] 'I is neither 1 nor 2'
[8] :EndSelect

In this case, the system compares the value of the array expression to the right of
the :Select statement with each of the expressions to the right of the :Case
statements and executes the block of code following the one that matches. If none
match, it executes the code following the :Else (which is optional). Note that
comparisons are performed using the ≡ primitive function, so the arrays must match
exactly. Note also that not all of the :Case expressions are necessarily evaluated
because the process stops as soon as a matching expression is found.

Instead of a :Case statement, you may also use a :CaseList statement. If so,
the enclose of the array expression to the right of :Select is tested for
membership of the array expression to the right of the :CaseList using the ∊
primitive function.

Note also that any code placed between the :Select and the first :Case or
:CaseList statements are unreachable; future versions of Dyalog APL may
generate an error when attempting to fix functions which include such code.

Chapter 2: Defined Functions & Operators 86

Example

[1] :Select ?6 6
[2] :Case 6 6
[3] 'Box Cars'
[4] :Case 1 1
[5] 'Snake Eyes'
[6] :CaseList 2⍴¨⍳6
[7] 'Pair'
[8] :CaseList (⍳6),¨⌽⍳6
[9] 'Seven'
[10] :Else
[11] 'Unlucky'
[12] :EndSelect

:Select Statement

|
:Select aexp
|
|<--.
| |
.-------.-------.---------------. |
| | | | |
| :Else :Case aexp :CaseList aexp |
		<--------------'	
code code			
<------' `-------------------------------'			
:End[Select]

Chapter 2: Defined Functions & Operators 87

With Statement :With obj

:With is a control structure that may be used to simplify a series of references to
an object or namespace. :With changes into the specified namespace for the
duration of the control structure, and is terminated by :End[With]. obj is either
the name of or a reference to a namespace. For example, you could update several
properties of a Grid object F.G as follows:

:With F.G
Values←4 3⍴0
RowTitles←'North' 'South' 'East' 'West'
ColTitles←'Cakes' 'Buns' 'Biscuits'

:EndWith

:With is analogous to ⎕CS in the following senses:

l The namespace argument to :With is interpreted relative to the current
space.

l With the exception of those with name class 9, local names in the
containing defined function continue to be visible in the new space.

l Global references from within the :With control structure are to names in
the new space.

l Exiting the defined function from within a :With control structure causes
the space to revert to the one from which the function was called.

On leaving the :With control structure, execution reverts to the original
namespace. Notice however that the interpreter does not detect branches (→) out
of the control structure. :With control structures can be nested in the normal
fashion:

[1] :With 'x' ⍝ Change to #.x
[2] :With 'y' ⍝ Change to #.x.y
[3] :With ⎕SE ⍝ Change to ⎕SE
[4] ... ⍝ ... in ⎕SE
[5] :EndWith ⍝ Back to #.x.y
[6] :EndWith ⍝ Back to #.x
[7] :EndWith ⍝ Back to #

:With Statement

|
:With namespace (ref or name)
|
code
|
:End[With]
|

Chapter 2: Defined Functions & Operators 88

Hold Statement :Hold tkns

Whenever more than one thread tries to access the same piece of data or shared
resource at the same time, you need some type of synchronisation to control access
to that data. This is provided by :Hold.

:Hold provides a mechanism to control thread entry into a critical section of
code. tkns must be a simple character vector or scalar, or a vector of character
vectors. tkns represents a set of "tokens", all of which must be acquired before the
thread can continue into the control structure. :Hold is analogous to the
component file system ⎕FHOLD which is used to synchronise access between
processes. See also Language Reference Guide: File Hold.

Within the whole active workspace, a token with a particular value may be held
only once. If the hold succeeds, the current thread acquires the tokens and
execution continues with the first phrase in the control structure. On exit from the
structure, the tokens are released for use by other threads. If the hold fails, because
one or more of the tokens is already in use:

1. If there is no :Else clause in the control structure, execution of the thread
is blocked until the requested tokens become available.

2. Otherwise, acquisition of the tokens is abandoned and execution resumed
immediately at the first phrase in the :Else clause.

tkns can be either a single token:

'a'
'Red'
'#.Util'
''
'Program Files'

… or a number of tokens:

'red' 'green' 'blue'
'doe' 'a' 'deer'
,¨'abc'
↓⎕nl 9

Pre-processing removes trailing blanks from each token before comparison, so that,
for example, the following two statements are equivalent:

:Hold 'Red' 'Green'
:Hold ↓2 5⍴'Red Green'

Unlike ⎕FHOLD, a thread does not release all existing tokens before attempting to
acquire new ones. This enables the nesting of holds, which can be useful when
multiple threads are concurrently updating parts of a complex data structure.

Chapter 2: Defined Functions & Operators 89

In the following example, a thread updates a critical structure in a child
namespace, and then updates a structure in its parent space. The holds will allow
all "sibling" namespaces to update concurrently, but will constrain updates to the
parent structure to be executed one at a time.

:Hold ⎕cs'' ⍝ Hold child space
... ⍝ Update child space
:Hold ##.⎕cs'' ⍝ Hold parent space

... ⍝ Update Parent space
:EndHold
...

:EndHold

However, with the nesting of holds comes the possibility of a "deadlock". For
example, consider the two threads:

Thread 1 Thread 2

:Hold 'red'
...
:Hold 'green'

...
 :EndHold

:EndHold

:Hold 'green'
...
:Hold 'red'

...
:EndHold

:EndHold

In this case if both threads succeed in acquiring their first hold, they will both
block waiting for the other to release its token.

If this deadlock situation is detected acquisition of the tokens is abandoned. Then:

1. If there is an :Else clause in the control structure, execution jumps to the
:Else clause.

2. Otherwise, APL issues an error (1008) DEADLOCK.

You can avoid deadlock by ensuring that threads always attempt to acquire tokens
in the same chronological order, and that threads never attempt to acquire tokens
that they already own.

Note that token acquisition for any particular :Hold is atomic, that is, either all of
the tokens or none of them are acquired. The following example cannot deadlock:

Thread 1 Thread 2

:Hold 'red'
...
:Hold 'green'

...
 :EndHold

:EndHold

:Hold 'green' 'red'
...
:EndHold

Chapter 2: Defined Functions & Operators 90

Examples

:Hold could be used for example, during the update of a complex data structure
that might take several lines of code. In this case, an appropriate value for the
token would be the name of the data structure variable itself, although this is just a
programming convention: the interpreter does not associate the token value with
the data variable.

:Hold'Struct'
... ⍝ Update Struct
Struct ← ...

:EndHold

The next example guarantees exclusive use of the current namespace:

:Hold ⎕CS'' ⍝ Hold current space
...

:EndHold

The following example shows code that holds two positions in a vector while the
contents are exchanged.

:Hold ⍕¨to fm
:If >/vec[fm to]

vec[fm to]←vec[to fm]
:End

:End

Between obtaining the next available file tie number and using it:

:Hold '⎕FNUMS'
tie←1+⌈/0,⎕FNUMS
fname ⎕FSTIE tie

:End

The above hold is not necessary if the code is combined into a single line:

fname ⎕FSTIE tie←1+⌈/0,⎕FNUMS

or,

tie←fname ⎕FSTIE 0

Note that :Hold, like its component file system counterpart ⎕FHOLD, is a device
to enable co-operating threads to synchronise their operation.

:Hold does not prevent threads from updating the same data structures
concurrently, it prevents threads only from :Holding the same tokens.

Chapter 2: Defined Functions & Operators 91

:Hold Statement

|
:Hold token(s)
|
code
|
|-------.
| |
| :Else
| |
| code
| |
|<------.
|
:End[Hold]
|

High-Priority Callbacks
:Hold with a non-zero number of tokens is not permitted in a high-priority
callback and an attempt to use it will cause the error:

DOMAIN ERROR: Cannot :Hold within high priority callback

See Interface Guide: High-Priority Callbacks.

Trap Statement :Trap ecode

:Trap is an error trapping mechanism that can be used in conjunction with, or as
an alternative to, the ⎕TRAP system variable. It is equivalent to APL2's ⎕EA,
except that the code to be executed is not restricted to a single expression and is
not contained within quotes (and so is slightly more efficient).

ecode is an integer scalar or vector containing the list of event codes which are to
be handled during execution of the segment of code between the :Trap and
:End[Trap] statements. Note that event codes 0 and 1000 are wild cards that
means any event code in a given range. See APL Error Messages on page 248.

Operation

The segment of code immediately following the :Trap keyword is executed. On
completion of this segment, if no error occurs, control passes to the code following
:End[Trap].

If an error occurs which is not specified by ecode, it is processed by outer
:Traps, ⎕TRAPs, or by the default system processing in the normal fashion.

If an error occurs, whose event code matches ecode:

Chapter 2: Defined Functions & Operators 92

l If the error occurred within a sub-function, the system cuts the state
indicator back to the function containing the :Trap keyword. In this
respect, :Trap behaves like ⎕TRAP with a 'C' qualifier.

l If the :Trap segment contains a :Case[List] ecode statement whose
ecode matches the event code of the error that has occurred, execution
continues from the statement following that :Case[List] ecode.

l Otherwise, if the :Trap segment contains a :Else statement, execution
continues from the first statement following the :Else statement.

l Otherwise, execution continues from the first statement following the :End
[Trap] and no error processing occurs.

Note that the error trapping is in effect only during execution of the initial code
segment. When a trapped error occurs, further error trapping is immediately
disabled (or surrendered to outer level :Traps or ⎕TRAPs). In particular, the error
trap is no longer in effect during processing of :Case[List]'s argument or in the
code following the :Case[List] or :Else statement. This avoids the situation
sometimes encountered with ⎕TRAP where an infinite "trap loop" occurs.

Note that the statement :Trap ⍬ results in no errors being trapped.

Examples
∇ lx

[1] :Trap 1000 ⍝ Cutback and exit on interrupt
[2] Main ...
[3] :EndTrap

∇

∇ ftie←Fcreate file ⍝ Create null component file
[1] :Trap 22 ⍝ Trap FILE NAME ERROR
[2] ftie←file ⎕FCREATE 0 ⍝ Try to create file.
[3] :Else
[4] ftie←file ⎕FTIE 0 ⍝ Tie the file.
[5] file ⎕FERASE ftie ⍝ Drop the file.
[6] file ⎕FCREATE ftie ⍝ Create new file.
[7] :EndTrap

∇

∇ lx ⍝ Distinguish various cases
[1] :Trap 0 1000
[2] Main ...
[3] :Case 1002
[4] 'Interrupted ...'
[5] :CaseList 1 10 72 76
[6] 'Not enough resources'
[7] :CaseList 17+⍳20
[8] 'File System Problem'
[9] :Else
[10] 'Unexpected Error'
[11] :EndTrap

∇

Chapter 2: Defined Functions & Operators 93

Note that :Traps can be nested:

∇ ntie←Ntie file ⍝ Tie native file
[1] :Trap 22 ⍝ Trap FILE NAME ERROR
[2] ntie←file ⎕NTIE 0 ⍝ Try to tie file
[3] :Else
[4] :Trap 22 ⍝ Trap FILE NAME ERROR
[5] ntie←(file,'.txt')⎕NTIE 0 ⍝ Try with .txt extn
[6] :Else
[7] ntie←file ⎕NCREATE 0 ⍝ Create null file.
[8] :EndTrap
[9] :EndTrap

∇

:Trap Statement

|
:Trap <ecode>
|
code
|
|<------------------------------------.
| |
.-------.-------. |
| | | |
| :Else :Case[List] <ecode> |
code code		
<------' `---------------------'		
:End[Trap]		

Where ecode is a scalar or vector of ⎕TRAP event codes.

Note that within the :Trap control structure, :Case is used for a single event
code and :CaseList for a vector of event codes.

Chapter 2: Defined Functions & Operators 94

GoTo Statement :GoTo aexp

A :GoTo statement is a direct alternative to → (branch) and causes execution to
jump to the line specified by the first element of aexp.

The following are equivalent. See Language Reference Guide: Branch for further
details.

→Exit
:GoTo Exit

→(N<I←I+1)/End
:GoTo (N<I←I+1)/End

→1+⎕LC
:GoTo 1+⎕LC

→10
:GoTo 10

Return Statement :Return

A :Return statement causes a function to terminate and has exactly the same
effect as →0.

The :Return control word takes no argument.

A :Return statement may occur anywhere in a function or operator.

Leave Statement :Leave

A :Leave statement is used to explicitly terminate the execution of a block of
statements within a :For, :Repeat or :While control structure.

The :Leave control word takes no argument.

Chapter 2: Defined Functions & Operators 95

Continue Statement :Continue

A :Continue statement starts the next iteration of the immediately surrounding
:For, :Repeat or :While control loop.

When executed within a :For loop, the effect is to start the body of the loop with
the next value of the iteration variable.

When executed within a :Repeat or :While loop, if there is a trailing test that
test is executed and, if the result is true, the loop is terminated. Otherwise the
leading test is executed in the normal fashion.

Section Statement :Section

Functions and scripted objects (classes, namespaces etc.) can be subdivided into
Sections with :Section and :EndSection statements. Both statements may be
followed by an optional and arbitrary name or description. The purpose is to split
the function up into sections that you can open and close in the Editor, thereby
aiding readability and code management. Sections have no effect on the execution
of the code, but must follow the nesting rules of other control structures.

Disposable Statement :Disposable

The Dyalog interface to .NET involves the creation and removal of .NET objects.
Many such objects are managed in that the .NET Common Language RunTime
(CLR) automatically releases the memory allocated to the object when that object
is no longer used. However, it is not possible to predict when the CLR garbage
collection will occur. Furthermore, the garbage collector has no knowledge of
unmanaged resources such as window handles, or open files and streams.

Typically, .NET classes implement a special interface called IDisposable which
provides a standard way for applications to release memory and other resources
when an instance is removed. Furthermore, the C# language has the using
keyword, which "Provides a convenient syntax that ensures the correct use of
IDisposable objects."

The :Disposable array statement in Dyalog APL provides a similar facility
to C#'s using. array may be a scalar or vector of namespace references.

When the block is exited, any .NET objects in array that implement
IDisposable will have IDisposable.Dispose called on them.

Chapter 2: Defined Functions & Operators 96

Note that exit includes normal exit as the code drops through :EndDisposable,
or if an error occurs and is trapped, or if branch (→) is used to exit the block, or
anything else.

See also: .NET Interface Guide: .Disposing of .NET Objects.

Example (Normal Exit)

:Disposable f←⎕NEW Font
.
.
:EndDisposable

In the above example, when the :EndDisposable statement is reached, the
system disposes of the Font object f (and all the resources associated with it) by
calling (IDisposable)f.Dispose(). A subsequent reference to f would
generate VALUE ERROR.

Example (Normal Exit)
:Disposable fonts←⎕NEW ¨Font Font
.
.
:EndDisposable

In the above example, Dispose() is called on each of the Font objects in
fonts during the processing of :EndDisposable.

Example (Branch Exit)
:Disposable fonts←⎕NEW ¨Font Font
.
→0
.
:EndDisposable

In this example, Dispose() is called on the Font objects in fonts during the
processing of the branch statement →0.

Chapter 2: Defined Functions & Operators 97

Example (TrapExit)
:trap 0

:Disposable fonts←⎕NEW ¨Font Font
.
÷0
.
:EndDisposable

:else

⎕←'failed'

:endif

Here, the objects are disposed of when the DOMAIN ERROR generated by the
expression ÷0 causes the stack to be cut back to the :Else clause. At this point
(just before the execution of the :Else clause) the name class of fonts becomes
0.

:Disposable Statement

|
:Disposable array
|
code
|
:End[Disposable]
|

Chapter 2: Defined Functions & Operators 98

APL Line Editor
The APL Line Editor described herein is included for completeness and for
adherence to the ISO APL standard. Dyalog recommends the use of the more
powerful Editor and Tracer in preference to the APL Line Editor. Full details of
these facilities can be found in the UI Guides for your version of Dyalog APL, as
well as in the descriptions of ⎕ED and)ED which appear in the Dyalog APL
Language Reference Guide.

Using the APL Line Editor, functions and operators are defined by entering
Definition Mode. This mode is opened and closed by the Del symbol, ∇. Within
this mode, all evaluation of input is deferred. The standard APL line editor
(described below) is used to create and edit operations within definition mode.

Operations may also be defined using the system function ⎕FX (implicit in a ⎕ED
fix) which acts upon the canonical (character), vector, nested or object
representation form of an operation. (See Language Reference Guide: Fix
Definition for details.)

Functions may also be created dynamically or by function assignment.

The line editor recognises three forms for the opening request.

Creating Defined Operation
The opening ∇ symbol is followed by the header line of a defined operation.
Redundant blanks in the request are permitted except within names. If acceptable,
the editor prompts for the first statement of the operation body with the line-
number 1 enclosed in brackets. On successful completion of editing, the defined
operation becomes the active definition in the workspace.

Example

∇R←FOO
[1] R←10
[2] ∇

FOO
10

The given operation name must not have an active referent in the workspace,
otherwise the system reports defn error and the system editor is not invoked:

)VARS
SALES X Y

∇R←SALES Y
defn error

Chapter 2: Defined Functions & Operators 99

The header line of the operation must be syntactically correct, otherwise the system
reports defn error and the system editor is not invoked:

∇R←A B C D:G
defn error

Listing Defined Operation
The ∇ symbol followed by the name of a defined operation and then by a closing
∇, causes the display of the named operation. Omitting the function name causes
the suspended operation (i.e. the one at the top of the state indicator) to be
displayed and opened for editing.

Example

∇FOO∇
∇ R←FOO

[1] R←10
∇

)SI
#.FOO[1] *

∇
∇ R←FOO

[1] R←10
[2]

Editing Active Defined Operation
Definition mode is entered by typing ∇ followed optionally by a name and editing
directive.

The ∇ symbol on its own causes the suspended operation (i.e. the one at the top of
the state indicator) to be displayed. The editor then prompts for a statement or
editing directive with a line-number one greater than the highest line-number in
the function. If the state indicator is empty, the system reports defn error and
definition mode is not entered.

The ∇ symbol followed by the name of an active defined operation causes the
display of the named operation. The editor then prompts for input as described
above. If the name given is not the name of an active referent in the workspace,
the opening request is taken to be the creation of a new operation as described in
paragraph 1. If the name refers to a pendent operation, the editor issues the
message warning pendent operation prior to displaying the operation. If
the name refers to a locked operation, the system reports defn error and definition
mode is not entered.

Chapter 2: Defined Functions & Operators 100

The ∇ symbol followed by the name of an active defined operation and an editing
directive causes the operation to be opened for editing and the editing directive
actioned. If the editing directive is invalid, it is ignored by the editor which then
prompts with a line-number one greater than the highest line-number in the
operation. If the name refers to a pendent operation, the editor issues the message
warning pendent operation prior to actioning the editing directive. If the
name refers to a locked operation, the system reports defn error and definition
mode is not entered.

On successful completion of editing, the defined operation becomes the active
definition in the workspace which may replace an existing version of the function.
Monitors, and stop and trace vectors are removed.

Example

∇FOO[2]
[2] R←R*2
[3] ∇

Editing Directives
Editing directives, summarised in Figure 2(iv) are permitted as the first non-blank
characters either after the operation name on opening definition mode for an active
defined function, or after a line-number prompt.

 Syntax Description

∇ Closes definition mode

[⎕] Displays the entire operation

[⎕n] Displays the operation starting at line n

[n⎕] Displays only line n

[∆n] Deletes line n

[n∆m] Deletes m lines starting at line n

[n] Prompts for input at line n

[n]s Replaces or inserts a statement at line n

[n⎕m]
Edits line n placing the cursor at character position m where an Edit
Control Symbol performs a specific action.

Chapter 2: Defined Functions & Operators 101

Line Numbers
Line numbers are associated with lines in the operation. Initially, numbers are
assigned as consecutive integers, beginning with [0] for the header line. The
number associated with an operation line remains the same for the duration of the
definition mode unless altered by editing directives. Additional lines may be
inserted by decimal numbering. Up to three places of decimal are permitted. On
closing definition mode, operation lines are re-numbered as consecutive integers.

The editor always prompts with a line number. The response may be a statement
line or an editing directive. A statement line replaces the existing line (if there is
one) or becomes an additional line in the operation:

∇R←A PLUS B
[1] R←A+B
[2]

Position
The editing directive [n], where n is a line number, causes the editor to prompt
for input at that line number. A statement or another editing directive may be
entered. If a statement is entered, the next line number to be prompted is the
previous number incremented by a unit of the display form of the last decimal
digit. Trailing zeros are not displayed in the fractional part of a line number:

[2] [0.8]
[0.8] ⍝ MONADIC OR DYADIC +
[0.9] ⍝ A ←→ OPTIONAL ARGUMENT
[1]

The editing directive [n]s, where n is a line number and s is a statement, causes
the statement to replace the current contents of line n, or to insert line n if there is
none:

[1] [0] R←{A} PLUS B
[1]

Delete
The editing directive [∆n], where n is a line number, causes the statement line to
be deleted. The form [n∆m], where n is a line number and m is a positive integer,
causes m consecutive statement lines starting from line number n to be deleted.

Chapter 2: Defined Functions & Operators 102

Edit
The editing directive [n⎕m], where n is a line number and m is an integer number,
causes line number n to be displayed and the cursor placed beneath the m{th}
character on a new line for editing. The response is taken to be edit control
symbols selected from:

/ to delete the character immediately above the symbol.

1 to 9 to insert from 1 to 9 spaces immediately prior to the character above
the digit.

A to Z to insert multiples of 5 spaces immediately prior to the character
above the letter, where A = 5, B = 10, C = 15 and so forth.

,

to insert the text after the comma, including explicitly entered
trailing spaces, prior to the character above the comma, and then re-
display the line for further editing with the text inserted and any
preceding deletions or space insertions also effected.

.

to insert the text after the comma, including explicitly entered
trailing spaces, prior to the character above the comma, and then
complete the edit of the line with the text inserted and any
preceding deletions or space insertions also effected.

Invalid edit symbols are ignored. If there are no valid edit symbols entered, or if
there are only deletion or space insertion symbols, the statement line is re-
displayed with characters deleted and spaces inserted as specified. The cursor is
placed at the first inserted space position or at the end of the line if none.
Characters may be added to the line which is then interpreted as seen.

The line number may be edited.

Examples

[1] [1⎕7]
[1] R←A+B

,→(0=⎕NC'A')⍴1←⎕LC ⋄
[1] →(0=⎕NC'A')⍴1←⎕LC ⋄ R←A+B

.⋄→END
[2] R←B
[3] END:
[4]

The form [n⎕0] causes the line number n to be displayed and the cursor to be
positioned at the end of the displayed line, omitting the edit phase.

Chapter 2: Defined Functions & Operators 103

Display
The editing directive [⎕] causes the entire operation to be displayed. The form
[⎕n] causes all lines from line number n to be displayed. The form [n⎕] causes
only line number n to be displayed:

[4] [0⎕]
[0] R←{A} PLUS B
[0]
[0] [⎕]
[0] R←{A} PLUS B
[0.1] ⍝ MONADIC OR DYADIC +
[1] →(0=⎕NC'A')⍴1+⎕LC ⋄ R←A+B ⋄→END
[2] R←B
[3] 'END:
[4]

Close Definition Mode
The editing directive ∇ causes definition mode to be closed. The new definition of
the operation becomes the active version in the workspace. If the name in the
operation header (which may or may not be the name used to enter definition
mode) refers to a pendent operation, the editor issues the message warning
pendent operation before exiting. The new definition becomes the active
version, but the original one will continue to be referenced until the operation
completes or is cleared from the state indicator.

If the name in the operation header is the name of a visible variable or label, the
editor reports defn error and remains in definition mode. It is then necessary
to edit the header line or quit.

If the header line is changed such that it is syntactically incorrect, the system
reports defn error, and re-displays the line leaving the cursor beyond the end
of the text on the line. Backspace/linefeed editing may be used to alter or cancel
the change:

[3] [0⎕] - display line 0
[0] R←{A} PLUS B
[0] R←{A} PLUS B:G;H - put syntax error in line 0
defn error
[0] R←{A} PLUS B:G;H - line redisplayed

;G;H - backspace/linefeed editing
[1]

Chapter 2: Defined Functions & Operators 104

Local names may be repeated. However, the line editor reports warning messages
as follows:

1. If a name is repeated in the header line, the system reports "warning
duplicate name" immediately.

2. If a label has the same name as a name in the header line, the system reports
"warning label name present in line 0" on closing definition mode.

3. If a label has the same name as another label, the system reports "warning
duplicate label" on closing definition mode.

1. If a name is repeated in the header line, the system reports "warning
duplicate name" immediately.

2. If a label has the same name as a name in the header line, the system reports
"warning label name present in line 0" on closing definition mode.

3. If a label has the same name as another label, the system reports "warning
duplicate label" on closing definition mode.

Improper syntax in expressions within statement lines of the function is not
detected by the system editor with the following exceptions:

l If the number of opening parentheses in each entire expression does not
equal the number of closing parentheses, the system reports "warning
unmatched parentheses", but accepts the line.

l If the number of opening brackets in each entire expression does not equal
the number of closing brackets, the system reports "warning unmatched
brackets", but accepts the line.

These errors are not detected if they occur in a comment or within quotes. Other
syntactical errors in statement lines will remain undetected until the operation is
executed.

Example

[4] R←(A[;1)=2)⌿⍎EXP,'×2
warning unmatched parentheses
warning unmatched brackets
[5]

Note that there is an imbalance in the number of quotes. This will result in a
SYNTAX ERROR when this operation is executed.

Quit Definition Mode
The user may quit definition mode by typing the INTERRUPT character. The
active version of the operation (if any) remains unchanged.

Chapter 2: Defined Functions & Operators 105

Dfns & Dops
A dfn (dop)1 is an alternative function definition style suitable for defining small
to medium sized functions. It bridges the gap between operator expressions:
rank←⍴∘⍴ and full "header style" definitions such as:

∇ rslt←larg func rarg;local...

In its simplest form, a dfn is an APL expression enclosed in curly braces {},
possibly including the special characters ⍺ and ⍵ to represent the left and right
arguments of the function respectively. For example:

{(+/⍵)÷⍴⍵} 1 2 3 4 ⍝ Arithmetic Mean (Average)
2.5

3 {⍵*÷⍺} 64 ⍝ ⍺th root
4

dfns can be named in the normal fashion:

mean←{(+/⍵)÷⍴⍵}
mean¨(2 3)(4 5)

2.5 4.5

dfns can be defined and used in any context where an APL function may be found,
in particular:

l In immediate execution mode as in the examples above.
l Within a defined function or operator.
l As the operand of an operator such as each (¨).
l Within another dfn.
l The last point means that it is easy to define nested local functions.

1The terms dfn and dop refer to a special type of function (or operator) unique to Dyalog. They
were originally named dynamic functions and dynamic operators, later abbreviated to Dfns and
Dops or D-Fns and D-Ops, but all these terms have been dropped in favour of the current ones.

Chapter 2: Defined Functions & Operators 106

Multi-Line Dfns
The single expression which provides the result of the dfn may be preceded by any
number of assignment statements. Each such statement introduces a name which is
local to the function.

For example in the following, the expressions sum← and num← create local
definitions sum and num.

mean←{ ⍝ Arithmetic mean
sum←+/⍵ ⍝ Sum of items
num←⍴⍵ ⍝ Number of items
sum÷num ⍝ Mean

}

An assignment to ⍵ is not allowed and will result in an error. For assignment to ⍺,
see Default Left Argument on page 107.

Note that dfns may be commented in the usual way using ⍝.

When the interpreter encounters a local definition, a new local name is created.
The name is shadowed dynamically exactly as if the assignment had been preceded
by: ⎕shadow name ⋄.

It is important to note the distinction between the two types of statement above.
There can be many assignment statements, each introducing a new local definition,
but only a single expression where the result is not assigned. As soon as the
interpreter encounters such an expression, it is evaluated and the result returned
immediately as the result of the function.

For example, in the following,

mean←{ ⍝ Arithmetic mean
sum←+/⍵ ⍝ Sum of items
num←⍴⍵ ⍝ Number of items
sum,num ⍝ Attempt to show sum,num (wrong)!
sum÷num ⍝ ... and return result.

}

... as soon as the interpreter encounters the expression sum,num, the function
terminates with the two item result (sum,num) and the following line is not
evaluated.

Chapter 2: Defined Functions & Operators 107

To display arrays to the session from within a dfn, you can use the explicit display
forms ⎕← or ⍞← as in:

mean←{ ⍝ Arithmetic mean
sum←+/⍵ ⍝ Sum of items
num←⍴⍵ ⍝ Number of items
⎕←sum,num ⍝ show sum,num.
sum÷num ⍝ ... and return result.

}

Note that local definitions can be used to specify local nested dfns:

rms←{ ⍝ Root Mean Square
root←{⍵*0.5} ⍝ ∇ Square root
mean←{(+/⍵)÷⍴⍵} ⍝ ∇ Mean
square←{⍵×⍵} ⍝ ∇ Square
root mean square ⍵

}

Default Left Argument
The special syntax: ⍺←expr is used to give a default value to the left argument if
a dfn is called monadically. For example:

root←{ ⍝ ⍺th root
⍺←2 ⍝ default to sqrt
⍵*÷⍺

}

The expression to the right of ⍺← is evaluated only if its dfn is called with no left
argument.

Note that the assignment ⍺←⊢ allows an ambivalent function to call an ambivalent
sub-function. For example in:

foo←{
⍺←⊢
⍺ goo ⍵

}

If foo is given a left argument, this is passed to goo. Otherwise, ⍺ is assigned ⊢
and the last line is ⊢ goo ⍵, which is a monadic call on goo followed by the ⊢
(Right) of the result of goo, which is the same value.

Chapter 2: Defined Functions & Operators 108

Guards
A Guard is a Boolean-single valued expression followed on the right by a ':'.
For example:

0≡≡⍵: ⍝ Right arg simple scalar
⍺<0: ⍝ Left arg negative

The guard is followed by a single APL expression: the result of the function.

⍵≥0: ⍵*0.5 ⍝ Square root if non-negative.

A dfn may contain any number of guarded expressions each on a separate line (or
collected on the same line separated by diamonds). Guards are evaluated in turn
until one of them yields a 1. The corresponding expression to the right of the
guard is then evaluated as the result of the function.

If an expression occurs without a guard, it is evaluated immediately as the default
result of the function. For example:

sign←{
⍵>0: '+ve' ⍝ Positive
⍵=0: 'zero' ⍝ zero

'-ve' ⍝ Negative (Default)
}

Local definitions and guards can be interleaved in any order.

Note again that any code following the first unguarded expression (which
terminates the function) could never be executed and would therefore be
redundant.

See also Error-Guards on page 110.

Shy Result
Dfns are usually 'pure' functions that take arguments and return explicit results.
Occasionally, however, the main purpose of the function might be a side-effect
such as the display of information in the session, or the updating of a file, and the
value of a result, a secondary consideration. In such circumstances, you might want
to make the result 'shy', so that it is discarded unless the calling context requires it.
This can be achieved by assigning a dummy variable after a (true) guard:

log←{ ⍝ Append ⍵ to file ⍺.
tie←⍺ ⎕fstie 0 ⍝ tie number for file,
cno←⍵ ⎕fappend tie ⍝ new component number,
tie←⎕funtie tie ⍝ untie file,
1:rslt←cno ⍝ comp number, shy result.

}

Chapter 2: Defined Functions & Operators 109

Lexical Name Scope
When an inner (nested) dfn refers to a name, the interpreter searches for it by
looking outwards through enclosing dfns, rather than searching back along the
state indicator. This regime, which is more appropriate for nested functions, is said
to employ lexical scope instead of APL's usual dynamic scope. This distinction
becomes apparent only if a call is made to a function defined at an outer level. For
the more usual inward calls, the two systems are indistinguishable.

For example, in the following function, variable type is defined both within
which itself and within the inner function fn1. When fn1 calls outward to fn2
and fn2 refers to type, it finds the outer one (with value 'lexical') rather
than the one defined in fn1:

which←{

type←'lexical'

fn1←{
type←'dynamic'
fn2 ⍵

}

fn2←{
type ⍵

}

fn1 ⍵
}

which'scope'
lexical scope

Chapter 2: Defined Functions & Operators 110

Error-Guards
An error-guard is (an expression that evaluates to) a vector of error numbers (see
APL Error Messages on page 248), followed by the digraph: ::, followed by an
expression, the body of the guard, to be evaluated as the result of the function. For
example:

11 5 :: ⍵×0 ⍝ Trap DOMAIN and LENGTH errors.

In common with :Trap and ⎕TRAP, error numbers 0 and 1000 are catch-alls for
synchronous errors and interrupts respectively.

When an error is generated, the system searches dynamically through the calling
functions for an error-guard that matches the error. If one is found, the execution
environment is unwound to its state immediately prior to the error-guard's
execution and the body of the error-guard is evaluated as the result of the function.
This means that, during evaluation of the body, the guard is no longer in effect and
so the danger of a hang caused by an infinite "trap loop", is avoided.

Notice that you can provide "cascading" error trapping in the following way:

0::try_2nd
0::try_1st
expr

In this case, if expr generates an error, its immediately preceding: 0:: catches it
and evaluates try_1st leaving the remaining error-guard in scope. If try_1st
fails, the environment is unwound once again and try_2nd is evaluated, this time
with no error-guards in scope.

See also Guards on page 108.

Chapter 2: Defined Functions & Operators 111

Examples:
Open returns a handle for a component file. If the exclusive tie fails, it attempts a
share-tie and if this fails, it creates a new file. Finally, if all else fails, a handle of 0
is returned.

open←{ ⍝ Handle for component file ⍵.
0::0 ⍝ Fails:: return 0 handle.
22::⍵ ⎕FCREATE 0 ⍝ FILE NAME:: create new one.
24 25::⍵ ⎕FSTIE 0 ⍝ FILE TIED:: try share tie.

⍵ ⎕FTIE 0 ⍝ Attempt to open file.
}

An error in div causes it to be called recursively with improved arguments.

div←{ ⍝ Tolerant division:: ⍺÷0 → ⍺.
⍺←1 ⍝ default numerator.
5::↑∇/↓↑⍺ ⍵ ⍝ LENGTH:: stretch to fit.
11::⍺ ∇ ⍵+⍵=0 ⍝ DOMAIN:: increase divisor.
⍺÷⍵ ⍝ attempt division.

}

Notice that some arguments may cause div to recur twice:

6 4 2 div 3 2
→ 6 4 2 div 3 2 0
→ 6 4 2 div 3 2 1
→ 2 2 2

The final example shows the unwinding of the local environment before the error-
guard's body is evaluated. Local name trap is set to describe the domain of its
following error-guard. When an error occurs, the environment is unwound to
expose trap's statically correct value.

add←{
trap←'domain' ⋄ 11::trap
trap←'length' ⋄ 5::trap
⍺+⍵

}

2 add 3 ⍝ Addition succeeds
5

2 add 'three' ⍝ DOMAIN ERROR generated.
domain

2 3 add 4 5 6 ⍝ LENGTH ERROR generated.
length

Chapter 2: Defined Functions & Operators 112

Note:

Following the setting of an error-guard, subsequent function calls will disable tail
call optimisation:

{
22::'Oops!' ⍝ this error-guard means that ...
tie←⍵ ⎕ftie 0
subfn tie ⍝ ... tail call not optimised

}

One way to maintain the tail call optimisation in the presence of an error-guard is
to isolate it within an inner function:

{
tie←{

22::0 ⍝ error-guard local to inner fn
⍵ ⎕ftie 0

}⍵
tie=0:'Oops!'
subfn tie ⍝ ... so this is a tail call

}

Chapter 2: Defined Functions & Operators 113

Dops
The operator equivalent of a dfn is distinguished by the presence of either of the
compound symbols ⍺⍺ or ⍵⍵ anywhere in its definition.

The syntax of a dop is:

l monadic – ⍺ (⍺⍺ op) ⍵
l dyadic – ⍺ (⍺⍺ op ⍵⍵) ⍵

where ⍺⍺ and ⍵⍵ are the left and right operands (functions or arrays) respectively,
and ⍺ and ⍵ are the arguments of the derived function.

Example

The following monadic each operator applies its function operand only to unique
elements of its argument. It then distributes the result to match the original
argument. This can deliver a performance improvement over the primitive each (¨)
operator if the operand function is costly and the argument contains a significant
number of duplicate elements. Note however, that if the operand function causes
side effects, the operation of dop and primitive versions will be different.

each←{ ⍝ Fast each:

shp←⍴⍵ ⍝ Shape and ...

vec←,⍵ ⍝ ... ravel of arg.

nub←∪vec ⍝ Vector of unique elements.

res←⍺⍺¨nub ⍝ Result for unique elts.

idx←nub⍳vec ⍝ Indices of arg in nub ...
shp⍴idx⊃¨⊂res ⍝ ... distribute result.

}

The dyadic else operator applies its left (else right) operand to its right argument
depending on its left argument.

else←{
⍺: ⍺⍺ ⍵ ⍝ True: apply Left operand

⍵⍵ ⍵ ⍝ Else, .. Right ..
}
0 1 ⌈else⌊¨ 2.5 ⍝ Try both false and true.

2 3

Chapter 2: Defined Functions & Operators 114

Recursion
A recursive dfn can refer to itself using its name explicitly, but because we allow
unnamed functions, we also need a special symbol for implicit self-reference: '∇'.
For example:

fact←{ ⍝ Factorial ⍵.
⍵≤1: 1 ⍝ Small ⍵, finished,
⍵×∇ ⍵-1 ⍝ Otherwise recur.

}

Implicit self-reference using '∇' has the further advantage that it incurs less
interpretative overhead and is therefore quicker. Tail calls using '∇' are
particularly efficient.

Recursive dops refer to their derived functions, that is the operator bound with its
operand(s) using ∇ or the operator itself using the compound symbol: ∇∇. The first
form of self reference is by far the more frequently used.

pow←{ ⍝ Function power.
⍺=0:⍵ ⍝ Apply function operand ⍺ times.
(⍺-1)∇ ⍺⍺ ⍵ ⍝ ⍺⍺ ⍺⍺ ⍺⍺ ... ⍵

}

Example

The following example shows a rather contrived use of the second form of
(operator) self reference. The exp operator composes its function operand with
itself on each recursive call. This gives the effect of an exponential application of
the original operand function:

exp←{ ⍝ Exponential fn application.
⍺=0:⍺⍺ ⍵ ⍝ Apply operand 2*⍺ times.
(⍺-1)⍺⍺∘⍺⍺ ∇∇ ⍵ ⍝ (⍺⍺∘⍺⍺)∘(...) ... ⍵

}
succ←{1+⍵} ⍝ Successor (increment).
10 succ exp 0

1024

Example

∇pow←{ ⍝ Function power.
[1] ⍺=0:⍵ ⍝ Apply function operand ⍺ times.
[2] (⍺-1)∇ ⍺⍺ ⍵ ⍝ ⍺⍺ ⍺⍺ ⍺⍺ ... ⍵
[3] }

∇
4 ⍟ pow 5000

¯0.2720968003

Chapter 2: Defined Functions & Operators 115

Example: Pythagorean triples

The following sequence shows an example of combining dfns and dops in an
attempt to find Pythagorean triples: (3 4 5)(5 12 13) ...

sqrt←{⍵*0.5} ⍝ Square root.

sqrt 9 16 25
3 4 5

hyp←{sqrt+/⊃⍵*2} ⍝ Hypoteneuse of
triangle.

hyp(3 4)(4 5)(5 12)
5 6.403124237 13

intg←{⍵=⌊⍵} ⍝ Whole number?

intg 2.5 3 4.5
0 1 0

pyth←{intg hyp ⍵} ⍝ Pythagorean pair?

pyth(3 4)(4 9)(5 12)
1 0 1

pairs←{,⍳⍵ ⍵} ⍝ Pairs of numbers 1..⍵.

pairs 3
1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3

filter←{(⍺⍺ ⍵)/⍵} ⍝ Op: ⍵ filtered by ⍺⍺.

pyth filter pairs 12 ⍝ Pythagorean pairs 1..12
3 4 4 3 5 12 6 8 8 6 9 12 12 5 12 9

So far, so good, but we have some duplicates: (6 8) is just double (3 4).

rpm←{ ⍝ Relatively prime?
⍵=0:⍺=1 ⍝ C.f. Euclid's gcd.
⍵ ∇ ⍵|⍺

}/¨ ⍝ Note the /¨

rpm(2 4)(3 4)(6 8)(16 27)
0 1 0 1

rpm filter pyth filter pairs 20
3 4 4 3 5 12 8 15 12 5 15 8

Chapter 2: Defined Functions & Operators 116

We can use an operator to combine the tests:

and←{ ⍝ Lazy parallel 'And'.
mask←⍺⍺ ⍵ ⍝ Left predicate

selects...
mask\⍵⍵ mask/⍵ ⍝ args for right

predicate.
}

pyth and rpm filter pairs 20
3 4 4 3 5 12 8 15 12 5 15 8

Better, but we still have some duplicates: (3 4) (4 3)

less←{</⊃⍵}
less(3 4)(4 3)

1 0

less and pyth and rpm filter pairs 40
3 4 5 12 7 24 8 15 9 40 12 35 20 21

And finally, as promised, triples:

{⍵,hyp ⍵}¨less and pyth and rpm filter pairs 35
3 4 5 5 12 13 7 24 25 8 15 17 12 35 37 20 21 29

A Larger Example

Function tokens uses nested local dfns to split an APL expression into its
constituent tokens. Note that all calls on the inner functions: lex, acc, and the
unnamed dfn in each token case, are tail calls. In fact, the only stack calls are those
on function: all, and the unnamed function: {⍵∨¯1⌽⍵}, within the "Char literal"
case.

Chapter 2: Defined Functions & Operators 117

tokens←{ ⍝ Lex of APL src line.
alph←⎕A,⎕Á,'_∆⍙',26↑17↓⎕AV ⍝ Alphabet for names.
all←{+/^\⍺∊⍵} ⍝ No. of leading ⍺∊⍵.
acc←{(⍺,↑/⍵)lex⊃↓/⍵} ⍝ Accumulate tokens.
lex←{

0=⍴⍵:⍺ ⋄ hd←↑⍵ ⍝ Next char else done.

hd=' ':⍺{ ⍝ White Space.
size←⍵ all' '
⍺ acc size ⍵

}⍵

hd∊alph:⍺{ ⍝ Name
size←⍵ all alph,⎕D
⍺ acc size ⍵

}⍵

hd∊'⎕:':⍺{ ⍝ System Name/Keyword
size←⍵ all hd,alph
⍺ acc size ⍵

}⍵

hd='''':⍺{ ⍝ Char literal
size←+/^\{⍵∨¯1⌽⍵}≠\hd=⍵
⍺ acc size ⍵

}⍵

hd∊⎕D,'¯':⍺{ ⍝ Numeric literal
size←⍵ all ⎕D,'.¯E'
⍺ acc size ⍵

}⍵

hd='⍝':⍺ acc(⍴⍵)⍵ ⍝ Comment
⍺ acc 1 ⍵ ⍝ Single char token.

}
(0⍴⊂'')lex,⍵

}
display tokens'xtok←size↑srce ⍝ Next token'

.→---.
| .→---. .→. .→---. .→. .→---. .→-. .→-----------. |
| |xtok| |←| |size| |↑| |srce| | | |⍝ Next token| |
| '----' '-' '----' '-' '----' '--' '------------' |
'∊---'

Chapter 2: Defined Functions & Operators 118

Tail Calls
A novel feature of the implementation of dfns is the way in which tail calls are
optimised.

When a dfn calls a sub-function, the result of the call may or may not be modified
by the calling function before being returned. A call where the result is passed
back immediately without modification is termed a tail call.

For example in the following, the first call on function fact is a tail call because
the result of fact is the result of the whole expression, whereas the second call
isn't because the result is subsequently multiplied by ⍵.

(⍺×⍵)fact ⍵-1 ⍝ Tail call on fact.
⍵×fact ⍵-1 ⍝ Embedded call on fact.

Tail calls occur frequently in dfns, and the interpreter optimises them by re-using
the current stack frame instead of creating a new one. This gives a significant
saving in both time and workspace usage. It is easy to check whether a call is a
tail call by tracing it. An embedded call will pop up a new trace window for the
called function, whereas a tail call will re-use the current one.

Using tail calls can improve code performance considerably, although at first the
technique might appear obscure. A simple way to think of a tail call is as a branch
with arguments. The tail call, in effect, branches to the first line of the function
after installing new values for ⍵ and ⍺.

Iterative algorithms can almost always be coded using tail calls.

In general, when coding a loop, we use the following steps; possibly in a different
order depending on whether we want to test at the "top" or the "bottom" of the
loop.

1. Initialise loop control variable(s). ⍝ init
2. Test loop control variable. ⍝ test
3. Process body of loop. ⍝ proc
4. Modify loop control variable for next iteration. ⍝ mod
5. Branch to step 2. ⍝ jump

For example, in classical APL you might find the following:

∇ value←limit loop value ⍝ init
[1] top:→(⎕CT>value-limit)/0 ⍝ test
[2] value←Next value ⍝ proc, mod
[3] →top ⍝ jump

∇

Chapter 2: Defined Functions & Operators 119

Control structures help us to package these steps:

∇ value←limit loop value ⍝ init
[1] :While ⎕CT<value-limit ⍝ test
[2] value←Next value ⍝ proc, mod
[3] :EndWhile ⍝ jump

∇

Using tail calls:

loop←{⍝ init
⎕CT>⍺-⍵:⍵ ⍝ test
⍺ ∇ Next ⍵ ⍝ proc, mod, jump

}

Restrictions
l Multi-line dfns can't be typed directly into the session. The interpreter
attempts to evaluate the first line with its trailing left brace and a SYNTAX
ERROR results.

l Dfns need not return a result. However even a non-result-returning
expression will terminate the function, so you can't, for example, call a non-
result-returning function from the middle of a dfn.

l You can trace a dfn only if it is defined on more than one line. Otherwise it
is executed atomically in the same way as an execute (⍎) expression. This
deliberate restriction is intended to avoid the confusion caused by tracing a
line and seeing nothing change on the screen.

l dfns do not currently support ⎕CS which, if used, generates a NONCE
ERROR.

l ⎕SHADOW ignores dfns when looking down the stack for a traditional
function (tradfn) in which to make a new local name.

l dfns do not support control structures or branch.
l dfns do not support modified assignment such as X plus←10 where X is
an array and plus is a function. In this example, both X and plus would
be assigned the value 10.

l ⎕MONITOR does not apply to dfns and dops.

Supplied Workspaces
You can find many samples of dfns and dops in utility workspace dfns.dws in
the ws sub-directory.

Additional examples are in workspaces: min.dws, max.dws, tube.dws and
eval.dws.

Chapter 2: Defined Functions & Operators 120

Chapter 3: Object Oriented Programming 121

Chapter 3:

Object Oriented Programming

Introducing Classes
A Class is a blueprint from which one or more Instances of the Class can be
created (instances are sometimes also referred to as Objects).

A Class may optionally derive from another Class, which is referred to as its Base
Class.

A Class may contain Methods, Properties and Fields (commonly referred to
together as Members) which are defined within the body of the class script or are
inherited from other Classes. This version of Dyalog APL does not support Events
although it is intended that these will be supported in a future release. However,
Classes that are derived from .NET types may generate events using 4 ⎕NQ.

A Class that is defined to derive from another Class automatically acquires the set
of Properties, Methods and Fields that are defined by its Base Class. This
mechanism is described as inheritance.

A Class may extend the functionality of its Base Class by adding new Properties,
Methods and Fields or by substituting those in the Base Class by providing new
versions with the same names as those in the Base Class.

Members may be defined to be Private or Public. A Public member may be used or
accessed from outside the Class or an Instance of the Class. A Private member is
internal to the Class and (in general) may not be referenced from outside.

Although Classes are generally used as blueprints for the creation of instances, a
class can have Shared members which can be used without first creating an
instance.

Class Names
Class names must adhere to the general rules for naming APL objects, and in
addition should not conflict with the name of a .NET Type that is defined in any
of the .NET Namespaces on the search path specified by ⎕USING.

Chapter 3: Object Oriented Programming 122

Defining Classes
A Class is defined by a script that may be entered and changed using the editor. A
class script may also be constructed from a vector of character vectors, and fixed
using ⎕FIX.

A class script begins with a :Class statement and ends with a :EndClass
statement.

For example, using the editor:

)CLEAR
clear ws

)ED ○Animal

[an edit window opens containing the following skeleton Class script ...]

:Class Animal
:EndClass

[the user edits and fixes the Class script]

)CLASSES
Animal

⎕NC⊂'Animal'
9.4

Editing Classes
Between the :Class and :EndClass statements, you may insert any number of
function bodies, Property definitions, and other elements. When you fix the Class
Script from the editor, these items will be fixed inside the Class namespace.

Note that the contents of the Class Script defines the Class in its entirety. You may
not add or alter functions by editing them independently and you may not add
variables by assignment or remove objects with ⎕EX.

When you re-fix a Class Script using the Editor or with ⎕FIX, the original Class is
discarded and the new definition, as specified by the Script, replaces the old one in
its entirety.

Note:

Associated with a Class (or an instance of a class) there is a completely separate
namespace which surrounds the class and can contain functions, variables and so
forth that are created by actions external to the class.

Chapter 3: Object Oriented Programming 123

For example, if X is not a public member of the class MyClass, then the following
expression will insert a variable X into the namespace which surrounds the class:

MyClass.X←99

The namespace is analogous to the namespace associated with a GUI object and
will be re-initialised (emptied) whenever the Class is re-fixed. Objects in this
parallel namespace are not visible from inside the Class or an Instance of the Class.

For further information, see Changing Scripted Objects Dynamically on page 176.

Inheritance
If you want a Class to derive from another Class, you simply add the name of that
Class to the :Class statement using colon+space as a separator.

The following example specifies that CLASS2 derives from CLASS1.

:Class CLASS2: CLASS1
:EndClass

Note that CLASS1 is referred to as the Base Class of CLASS2.

If a Class has a Base Class, it automatically acquires all of the Public Properties,
Methods and Fields defined for its Base Class unless it replaces them with its own
members of the same name. This principle of inheritance applies throughout the
Class hierarchy. Note that Private members are not subject to inheritance.

Warning:When a class is fixed, it keeps a reference (a pointer) to its base class. If
the global name of the base class is expunged, the derived class will still have the
base class reference, and the base class will therefore be kept alive in the
workspace. The derived class will be fully functional, but attempts to edit it will
fail when it attempts to locate the base class as the new definition is fixed.

At this point, if a new class with the original base class name is created, the
derived class has no way of detecting this, and it will continue to use the old and
invisible version of the base class. Only when the derived class is re-fixed, will the
new base class be detected.

If you edit, re-fix or copy an existing base class, APL will take care to patch up the
references, but if the base class is expunged first and recreated later, APL is unable
to detect the substitution. You can recover from this situation by editing or re-
fixing the derived class(es) after the base class has been substituted.

Copying Classes
See Programming Reference Guide: Copy System Command.

Chapter 3: Object Oriented Programming 124

Classes that derive from .NET Types
You may define a Class that derives from any of the .NET Types by specifying the
name of the .NET Type and including a :USING statement that provides a path to
the .NET Assembly in which the .NET Type is located.

Example

:Class APLGreg: GregorianCalendar
:Using System.Globalization
...
:EndClass

Classes that derive from the Dyalog GUI
You may define a Class that derives from any of the Dyalog APL GUI objects by
specifying the name of the Dyalog APL GUI Class in quotes.

For example, to define a Class named Duck that derives from a Poly object, the
Class specification would be:

:Class Duck:'Poly'
:EndClass

The Base Constructor for such a Class is the ⎕WC system function.

Instances
A Class is generally used as a blueprint or model from which one or more
Instances of the Class are constructed. Note however that a class can have Shared
members which can be used directly without first creating an instance.

You create an instance of a Class using the ⎕NEW system function which is
monadic.

The 1-or 2-item argument to ⎕NEW contains a reference to the Class and,
optionally, arguments for its Constructor function.

When ⎕NEW executes, it creates a regular APL namespace to contain the Instance,
and within that it creates an Instance space, which is populated with any Instance
Fields defined by the class (with default values if specified), and pointers to the
Instance Method and Property definitions specified by the Class.

If a monadic Constructor is defined, it is called with the arguments specified in the
second item of the argument to ⎕NEW. If ⎕NEW was called without Constructor
arguments, and the class has a niladic Constructor, this is called instead.

The Constructor function is typically used to initialise the instance and may
establish variables in the instance namespace.

Chapter 3: Object Oriented Programming 125

The result of ⎕NEW is a reference to the instance namespace. Instances of Classes
exhibit the same set of Properties, Methods and Fields that are defined for the
Class.

Constructors
A Constructor is a special function defined in the Class script that is to be run
when an Instance of the Class is created by ⎕NEW. Typically, the job of a
Constructor is to initialise the new Instance in some way.

A Constructor is identified by a :Implements Constructor statement. This
statement may appear anywhere in the body of the function after the function
header. The significance of this is discussed below.

Note that it is also essential to define the Constructor to be Public, with a
:Access Public statement, because like all Class members, Constructors
default to being Private. Private Constructors currently have no use or purpose, but
it is intended that they will be supported in a future release of Dyalog APL.

A Constructor function may be niladic or monadic and must not return a result.

A Class may specify any number of different Constructors of which one (and only
one) may be niladic. This is also referred to as the default Constructor.

There may be any number of monadic Constructors, but each must have a
differently defined argument list which specifies the number of items expected in
the Constructor argument. See Constructor Overloading on page 126 for details.

The only way a Constructor function should be invoked is by ⎕NEW. See Base
Constructors on page 133 for further details. If you attempt to call a Constructor
function from outside its Class, it will cause a SYNTAX ERROR. A Constructor
function should not call another Constructor function within the same Class,
although it will not generate an error. This would cause the Base Constructor to be
called twice, with unpredictable consequences.

When ⎕NEW is executed with a 2-item argument, the appropriate monadic
Constructor is called with the second item of the ⎕NEW argument.

The niladic (default) Constructor is called when ⎕NEW is executed with a 1-item
argument, a Class reference alone, or whenever APL needs to create a fill item for
the Class.

Note that ⎕NEW first creates a new instance of the specified Class, and then
executes the Constructor inside the instance.

Chapter 3: Object Oriented Programming 126

Example

The DomesticParrot Class defines a Constructor function egg that initialises
the Instance by storing its name (supplied as the 2nd item of the argument to
⎕NEW) in a Public Field called Name.

:Class DomesticParrot: Parrot
:Field Public Name

∇ egg name
:Implements Constructor
:Access Public
Name←name

∇
...

:EndClass ⍝ DomesticParrot

pol←⎕NEW DomesticParrot 'Polly'
pol.Name

Polly

Constructor Overloading
NameList header syntax is used to define different versions of a Constructor each
with a different number of parameters, referred to as its signature. See Namelists on
page 69 for details. The Clover Class illustrates this principle.

In deciding which Constructor to call, APL matches the shape of the Constructor
argument with the signature of each of the Constructors that are defined. If a
constructor with the same number of arguments exists (remembering that 0
arguments will match a niladic Constructor), it is called. If there is no exact match,
and there is a Constructor with a general signature (an un-parenthesised right
argument), it is called. If no suitable constructor is found, a LENGTH ERROR is
reported.

There may be one and only one constructor with a particular signature.

The only way a Constructor function should be invoked is by ⎕NEW. See Base
Constructors on page 133 for further details. If you attempt to call a Constructor
function from outside its Class, it will cause a SYNTAX ERROR. A Constructor
function should not call another Constructor function within the same Class,
although it will not generate an error. This would cause the Base Constructor to be
called twice, with unpredictable consequences.

Chapter 3: Object Oriented Programming 127

In the Clover Class example Class, the following Constructors are defined:

Constructor Implied argument

Make1 1-item vector

Make2 2-item vector

Make3 3-item vector

Make0 No argument

MakeAny Any array accepted

Clover Class Example

:Class Clover ⍝ Constructor Overload Example
:Field Public Con
∇ Make0

:Access Public
:Implements Constructor
make 0

∇
∇ Make1(arg)

:Access Public
:Implements Constructor
make arg

∇
∇ Make2(arg1 arg2)

:Access Public
:Implements Constructor
make arg1 arg2

∇
∇ Make3(arg1 arg2 arg3)

:Access Public
:Implements Constructor
make arg1 arg2 arg3

∇
∇ MakeAny args

:Access Public
:Implements Constructor
make args

∇
∇ make args

Con←(⍴args)(2⊃⎕SI)args
∇

:EndClass ⍝ Clover

Chapter 3: Object Oriented Programming 128

In the following examples, the Make function (see Clover Class for details)
displays:

<shape of argument> <name of Constructor
called><argument>
(see function make)

Creating a new Instance of Clover with a 1-element vector as the Constructor
argument, causes the system to choose the Make1 Constructor. Note that, although
the argument to Make1 is a 1-element vector, this is disclosed as the list of
arguments is unpacked into the (single) variable arg1.

(⎕NEW Clover(,1)).Con
Make1 1

Creating a new Instance of Clover with a 2- or 3-element vector as the Constructor
argument causes the system to choose Make2, or Make3 respectively.

(⎕NEW Clover(1 2)).Con
2 Make2 1 2

(⎕NEW Clover(1 2 3)).Con
3 Make3 1 2 3

Creating an Instance with any other Constructor argument causes the system to
choose MakeAny.

(⎕NEW Clover(⍳10)).Con
10 MakeAny 1 2 3 4 5 6 7 8 9 10

(⎕NEW Clover(2 2⍴⍳4)).Con
2 2 MakeAny 1 2

3 4

Note that a scalar argument will call MakeAny and not Make1.

(⎕NEW Clover 1).Con
MakeAny 1

and finally, creating an Instance without a Constructor argument causes the system
to choose Make0.

(⎕NEW Clover).Con
Make0 0

Chapter 3: Object Oriented Programming 129

Niladic (Default) Constructors
A Class may define a niladic Constructor and/or one or more Monadic
Constructors. The niladic Constructor acts as the default Constructor that is used
when ⎕NEW is invoked without arguments and when APL needs a fill item.

:Class Bird
:Field Public Species

∇ egg spec
:Access Public Instance
:Implements Constructor
Species←spec

∇
∇ default

:Access Public Instance
:Implements Constructor
Species←'Default Bird'

∇
∇ R←Speak

:Access Public
R←'Tweet, tweet!'

∇

:EndClass ⍝ Bird

The niladic Constructor (in this example, the function default) is invoked when
⎕NEW is called without Constructor arguments. In this case, the Instance created is
no different to one created by the monadic Constructor egg, except that the value
of the Species Field is set to 'Default Bird'.

Birdy←⎕NEW Bird
Birdy.Species

Default Bird

The niladic Constructor is also used when APL needs to make a fill item of the
Class. For example, in the expression (3↑Birdy), APL has to create two fill
items of Birdy (one for each of the elements required to pad the array to length 3)
and will in fact call the niladic Constructor twice.

In the following statement:

TweetyPie←3⊃10↑Birdy

Chapter 3: Object Oriented Programming 130

The 10↑ (temporarily) creates a 10-element array comprising the single entity
Birdy padded with 9 fill-elements of Class Bird. To obtain the 9 fill-elements,
APL calls the niladic Constructor 9 times, one for each separate prototypical
Instance that it is required to make.

TweetyPie.Species
Default Bird

Empty Arrays of Instances: Why ?
In APL it is natural to use arrays of Instances. For example, consider the following
example.

:Class Cheese
:Field Public Name←''
:Field Public Strength←⍬
∇ make2(name strength)

:Access Public
:Implements Constructor
Name Strength←name strength

∇
∇ make1 name

:Access Public
:Implements Constructor
Name Strength←name 1

∇
∇ make_excuse

:Access Public
:Implements Constructor
⎕←'The cat ate the last one!'

∇
:EndClass

We might create an array of Instances of the Cheese Class as follows:

cdata←('Camembert' 5)('Caephilly' 2) 'Mild Cheddar'
cheeses←{⎕NEW Cheese ⍵}¨cdata

Suppose we want a range of medium-strength cheese for our cheese board.

board←(cheeses.Strength<3)/cheeses
board.Name

Caephilly Mild Cheddar

But look what happens when we try to select really strong cheese:

board←(cheeses.Strength>5)/cheeses
board.Name

The cat ate the last one!

Chapter 3: Object Oriented Programming 131

Note that this message is not the result of the expression, but was explicitly
displayed by the make_excuse function. The clue to this behaviour is the shape
of board; it is empty!

⍴board
0

When a reference is made to an empty array of Instances (strictly speaking, a
reference that requires a prototype), APL creates a new Instance by calling the
niladic (default) Constructor, uses the new Instance to satisfy the reference, and
then discards it. Hence, in this example, the reference:

board.Name

caused APL to run the niladic Constructor make_excuse, which displayed:

The cat ate the last one!

Notice that the behaviour of empty arrays of Instances is modelled VERY closely
after the behaviour of empty arrays in general. In particular, the Class designer is
given the task of deciding what the types of the members of the prototype are.

Empty Arrays of Instances: How?
To cater for the need to handle empty arrays of Instances as easily as non-empty
arrays, a reference to an empty array of Class Instances is handled in a special way.

Whenever a reference or an assignment is made to the content of an empty array of
Instances, the following steps are performed:

1. APL creates a new Instance of the same Class of which the empty Instance
belongs

2. the default (niladic) Constructor is run in the new Instance
3. the appropriate value is obtained or assigned:

o if it is a reference is to a Field, the value of the Field is obtained
o if it is a reference is to a Property, the PropertyGet function is run
o if it is a reference is to a Method, the method is executed
o if it is an assignment, the assignment is performed or the PropertySet

function is run
4. if it is a reference, the result of step 3 is used to generate an empty result

array with a suitable prototype by the application of the function {0⍴⊂⍵}
to it

5. the Class Destructor (if any) is run in the new Instance
6. the New Instance is deleted

Chapter 3: Object Oriented Programming 132

Example

:Class Bird
:Field Public Species

∇ egg spec
:Access Public Instance
:Implements Constructor
⎕DF Species←spec

∇
∇ default

:Access Public Instance
:Implements Constructor
⎕DF Species←'Default Bird'
#.DISPLAY Species

∇
∇ R←Speak

:Access Public
#.DISPLAY R←'Tweet, Tweet, Tweet'

∇

:EndClass ⍝ Bird

First, we can create an empty array of Instances of Bird using 0⍴.

Empty←0⍴⎕NEW Bird 'Robin'

A reference to Empty.Species causes APL to create a new Instance and invoke
the niladic Constructor default. This function sets Species to 'Default
Bird'and calls #.DISPLAY which displays output to the Session.

DISPLAY Empty.Species
.→-----------.
|Default Bird|
'------------'

APL then retrieves the value of Species ('Default Bird'), applies the
function {0⍴⊂⍵} to it and returns this as the result of the expression.

.⊖---------------.
| .→-----------. |
| | | |
| '------------' |
'∊---------------'

A reference to Empty.Speak causes APL to create a new Instance and invoke the
niladic Constructor default. This function sets Species to 'Default
Bird'and calls #.DISPLAY which displays output to the Session.

Chapter 3: Object Oriented Programming 133

DISPLAY Empty.Speak
.→-----------.
|Default Bird|
'------------'

APL then invokes function Speak which displays 'Tweet, Tweet, Tweet'
and returns this as the result of the function.

.→------------------.
|Tweet, Tweet, Tweet|
'-------------------'

APL then applies the function {0⍴⊂⍵} to it and returns this as the result of the
expression.

.⊖----------------------.
| .→------------------. |
| | | |
| '-------------------' |
'∊----------------------'

Base Constructors
Constructors in a Class hierarchy are not inherited in the same way as other
members. However, there is a mechanism for all the Classes in the Class
inheritance tree to participate in the initialisation of an Instance.

Every Constructor function contains a :Implements Constructor statement
which may appear anywhere in the function body. The statement may optionally
be followed by the :Base control word and an arbitrary expression.

The statement:

:Implements Constructor :Base expr

calls a monadic Constructor in the Base Class. The choice of Constructor depends
upon the rank and shape of the result of expr (see Constructor Overloading on
page 126 for details).

Whereas, the statement:

:Implements Constructor

or

:Implements Constructor :Base

calls the niladic Constructor in the Base Class.

Note that during the instantiation of an Instance, these calls potentially take place
in every Class in the Class hierarchy.

Chapter 3: Object Oriented Programming 134

If, anywhere down the hierarchy, there is a monadic call and there is no matching
monadic Constructor, the operation fails with a LENGTH ERROR.

If there is a niladic call on a Class that defines no Constructors, the niladic call is
simply repeated in the next Class along the hierarchy.

However, if a Class defines a monadic Constructor and no niladic Constructor it
implies that that Class cannot be instantiated without Constructor arguments.
Therefore, if there is a call to a niladic Constructor in such a Class, the operation
fails with a LENGTH ERROR. Note that it is therefore impossible for APL to
instantiate a fill item or process a reference to an empty array for such a Class or
any Class that is based upon it.

A Constructor function may not call another Constructor function and a
constructor function may not be called directly from outside the Class or Instance.
The only way a Constructor function may be invoked is by ⎕NEW. The
fundamental reason for these restrictions is that there must be one and only one
call on the Base Constructor when a new Instance is instantiated. If Constructor
functions were allowed to call one another, there would be several calls on the
Base Constructor. Similarly, if a Constructor could be called directly it would
potentially duplicate the Base Constructor call.

Chapter 3: Object Oriented Programming 135

Niladic Example
In the following example, DomesticParrot is derived from Parrot which is
derived from Bird. They all share the Field Desc (inherited from Bird). Each of
the 3 Classes has its own niladic Constructor called egg0.

:Class Bird
:Field Public Desc
∇ egg0

:Access Public
:Implements Constructor
Desc←'Bird'

∇
:EndClass ⍝ Bird

:Class Parrot: Bird
∇ egg0

:Access Public
:Implements Constructor
Desc,←'→Parrot'

∇
:EndClass ⍝ Parrot

:Class DomesticParrot: Parrot
∇ egg0

:Access Public
:Implements Constructor
Desc,←'→DomesticParrot'

∇
:EndClass ⍝ DomesticParrot

(⎕NEW DomesticParrot).Desc
Bird→Parrot→DomesticParrot

Explanation

⎕NEW creates the new instance and runs the niladic Constructor
DomesticParrot.egg0. As soon as the line:

:Implements Constructor

is encountered, ⎕NEW calls the niladic constructor in the Base Class
Parrot.egg0

Parrot.egg0 starts to execute and as soon as the line:

:Implements Constructor

is encountered, ⎕NEW calls the niladic constructor in the Base Class Bird.egg0.

Chapter 3: Object Oriented Programming 136

When the line:

:Implements Constructor

is encountered, ⎕NEW cannot call the niladic constructor in the Base Class (there is
none) so the chain of Constructors ends. Then, as the state indicator unwinds ...

Bird.egg0 executes Desc←'Bird''

Parrot.egg0 executes Desc,←'→Parrot''

DomesticParrot.egg0 execute Desc,←'→DomesticParrot''

Monadic Example
In the following example, DomesticParrot is derived from Parrot which is
derived from Bird. They all share the Field Species (inherited from Bird) but
only a DomesticParrot has a Field Name. Each of the 3 Classes has its own
Constructor called egg.

:Class Bird
:Field Public Species
∇ egg spec

:Access Public Instance
:Implements Constructor
Species←spec

∇
...

:EndClass ⍝ Bird

:Class Parrot: Bird
∇ egg species

:Access Public Instance
:Implements Constructor :Base 'Parrot: ',species

∇
...

:EndClass ⍝ Parrot

:Class DomesticParrot: Parrot
:Field Public Name
∇ egg(name species)

:Access Public Instance
:Implements Constructor :Base species
⎕DF Name←name

∇
...

:EndClass ⍝ DomesticParrot

Chapter 3: Object Oriented Programming 137

pol←⎕NEW DomesticParrot('Polly' 'Scarlet Macaw')
pol.Name

Polly
pol.Species

Parrot: Scarlet Macaw

Explanation

⎕NEW creates the new instance and runs the Constructor DomesticParrot.egg.
The egg header splits the argument into two items name and species. As soon
as the line:

:Implements Constructor :Base species

is encountered, ⎕NEW calls the Base Class constructor Parrot.egg, passing it the
result of the expression to the right, which in this case is simply the value in
species.

Parrot.egg starts to execute and as soon as the line:

:Implements Constructor :Base 'Parrot: ',species

is encountered, ⎕NEW calls its Base Class constructor Bird.egg, passing it the
result of the expression to the right, which in this case is the character vector
'Parrot: ' catenated with the value in species.

Bird.egg assigns its argument to the Public Field Species.

At this point, the state indicator would be:

)SI
[#.[Instance of DomesticParrot]] #.Bird.egg[3]*
[constructor]
:base
[#.[Instance of DomesticParrot]] #.Parrot.egg[2]
[constructor]
:base
[#.[Instance of DomesticParrot]] #.DomesticParrot.egg[2]
[constructor]

Chapter 3: Object Oriented Programming 138

Bird.egg then returns to Parrot.egg which returns to
DomesticParrot.egg.

Finally, DomesticParrot.egg[3] is executed, which establishes Field Name
and the Display Format (⎕DF) for the instance.

Destructors
A Destructor is a function that is called just before an Instance of a Class ceases to
exist and is typically used to close files or release external resources associated
with an Instance.

An Instance of a Class is destroyed when:

l The Instance is expunged using ⎕EX or)ERASE.
l A function, in which the Instance is localised, exits.

But be aware that a destructor will also be called if:

l The Instance is re-assigned (see below)
l The result of ⎕NEW is not assigned (the instance gets created then
immediately destroyed).

l APL creates (and then destroys) a new Instance as a result of a reference to a
member of an empty Instance. The destructor is called after APL has
obtained the appropriate value from the instance and no longer needs it.

l The constructor function fails. Note that the Instance is actually created
before the constructor is run (inside it), and if the constructor fails, the
fledgling Instance is discarded. Note too that this means a destructor may
need to deal with a partially constructed instance, so the code may need to
check that resources were actually acquired, before releasing them.

l On the execution of)CLEAR,)LOAD, ⎕LOAD,)OFF or ⎕OFF.

Warning: a Destructor may be executed on any thread.

Note that an Instance of a Class only disappears when the last reference to it
disappears. For example, the sequence:

I1←⎕NEW MyClass
I2←I1
)ERASE I1

will not cause the Instance of MyClass to disappear because it is still referenced
by I2.

A Destructor is identified by the statement :Implements Destructor which
must appear immediately after the function header in the Class script.

Chapter 3: Object Oriented Programming 139

:Class Parrot
...
∇ kill

:Implements Destructor
'This Parrot is dead'

∇
...

:EndClass ⍝ Parrot

pol←⎕NEW Parrot 'Scarlet Macaw'
)ERASE pol

This Parrot is dead

Note that reassignment to pol causes the Instance referenced by pol to be
destroyed and the Destructor invoked:

pol←⎕NEW Parrot 'Scarlet Macaw'
pol←⎕NEW Parrot 'Scarlet Macaw'

This Parrot is dead

If a Class inherits from another Class, the Destructor in its Base Class is
automatically called after the Destructor in the Class itself.

So, if we have a Class structure: DomesticParrot => Parrot => Bird
containing the following Destructors:

:Class DomesticParrot: Parrot
...
∇ kill

:Implements Destructor
'This ',(⍕⎕THIS),' is dead'

∇
...

:EndClass ⍝ DomesticParrot

:Class Parrot: Bird
...
∇ kill

:Implements Destructor
'This Parrot is dead'

∇
...

:EndClass ⍝ Parrot

Chapter 3: Object Oriented Programming 140

:Class Bird
...
∇ kill

:Implements Destructor
'This Bird is dead'

∇
...

:EndClass ⍝ Bird

Destroying an Instance of DomesticParrot will run the Destructors in
DomesticParrot, Parrot and Bird and in that order.

pol←⎕NEW DomesticParrot

)CLEAR
This Polly is dead
This Parrot is dead
This Bird is dead
clear ws

Class Members
A Class may contain Methods, Fields and Properties (commonly referred to
together as Members) which are defined within the body of the Class script or are
inherited from other Classes.

Methods are regular APL defined functions, but with some special characteristics
that control how they are called and where they are executed. Dfns may not be
used as Methods.

Fields are just like APL variables. To get the Field value, you reference its name;
to set the Field value, you assign to its name, and the Field value is stored in the
Field. However, Fields differ from variables in that they possess characteristics that
control their accessibility.

Properties are similar to APL variables. To get the Property value, you reference its
name; to set the Property value, you assign to its name. However, Property values
are actually accessed via PropertyGet and PropertySet functions that may perform
all sorts of operations. In particular, the value of a Property is not stored in the
Property and may be entirely dynamic.

All three types of member may be declared as Public or Private and as Instance or
Shared.

Public members are visible from outside the Class and Instances of the Class,
whereas Private members are only accessible from within.

Chapter 3: Object Oriented Programming 141

Instance Members are unique to every Instance of the Class, whereas Shared
Members are common to all Instances and Shared Members may be referenced
directly on the Class itself.

Fields
A Field behaves just like an APL variable.

To get the value of a Field, you reference its name; to set the value of a Field, you
assign to its name. Conceptually, the Field value is stored in the Field. However,
Fields differ from variables in that they possess characteristics that control their
accessibility.

A Field may be declared anywhere in a Class script by a :Field statement. This
specifies:

l the name of the Field
l whether the Field is Public or Private
l whether the Field is Instance or Shared
l whether or not the Field is ReadOnly
l the .NET type for the Field when the Class is exported as a .NET Assembly.
l optionally, an initial value for the Field.

Note that Triggers may be associated with Fields. See Trigger Fields on page 144
for details.

Public Fields
A Public Field may be accessed from outside an Instance or a Class. Note that the
default is Private.

Class DomesticParrot has a Name Field which is defined to be Public and
Instance (by default).

:Class DomesticParrot: Parrot
:Field Public Name

∇ egg nm
:Access Public
:Implements Constructor
Name←nm

∇
...

:EndClass ⍝ DomesticParrot

Chapter 3: Object Oriented Programming 142

The Name field is initialised by the Class constructor.

pet←⎕NEW DomesticParrot'Polly'
pet.Name

Polly

The Name field may also be modified directly:

pet.Name←⌽pet.Name
pet.Name

ylloP

Initialising Fields
A Field may be assigned an initial value. This can be specified by an arbitrary
expression that is executed when the Class is fixed by the Editor or by ⎕FIX.

:Class DomesticParrot: Parrot
:Field Public Name

:Field Public Talks←1

∇ egg nm
:Access Public
:Implements Constructor
Name←nm

∇
...

:EndClass ⍝ DomesticParrot

Field Talks will be initialised to 1 in every instance of the Class.

pet←⎕NEW DomesticParrot 'Dicky'

pet.Talks
1

pet.Name
Dicky

Note that if a Field is ReadOnly, this is the only way that it may be assigned a
value.

See also: Shared Fields on page 143.

Chapter 3: Object Oriented Programming 143

Private Fields
A Private Field may only be referenced by code running inside the Class or an
Instance of the Class. Furthermore, Private Fields are not inherited.

The ComponentFile Class (see page 156) has a Private Instance Field named tie
that is used to store the file tie number in each Instance of the Class.

:Class ComponentFile
:Field Private Instance tie

∇ Open filename
:Implements Constructor
:Access Public Instance
:Trap 0

tie←filename ⎕FTIE 0
:Else

tie←filename ⎕FCREATE 0
:EndTrap
⎕DF filename,'(Component File)'

∇

As the field is declared to be Private, it is not accessible from outside an Instance
of the Class, but is only visible to code running inside.

F1←⎕NEW ComponentFile 'test1'
F1.tie

VALUE ERROR
F1.tie

^

Shared Fields
If a Field is declared to be Shared, it has the same value for every Instance of the
Class. Moreover, the Field may be accessed from the Class itself; an Instance is not
required.

The following example establishes a Shared Field called Months that contains
abbreviated month names which are appropriate for the user's current International
settings. It also shows that an arbitrarily complex statement may be used to
initialise a Field.

:Class Example
:Using System.Globalization
:Field Public Shared ReadOnly Months←12↑(⎕NEW

DateTimeFormatInfo).AbbreviatedMonthNames
:EndClass ⍝ Example

Chapter 3: Object Oriented Programming 144

A Shared Field is not only accessible from an instance...

EG←⎕NEW Example
EG.Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

... but also, directly from the Class itself.

Example.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Notice that in this case it is necessary to insert a :Using statement (or the
equivalent assignment to ⎕USING) in order to specify the .NET search path for the
DateTimeFormatInfo type. Without this, the Class would fail to fix.

You can see how the assignment works by executing the same statements in the
Session:

⎕USING←'System.Globalization'
12↑(⎕NEW DateTimeFormatInfo).AbbreviatedMonthNames

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Trigger Fields
A field may act as a Trigger so that a function may be invoked whenever the value
of the Field is changed.

As an example, it is often useful for the Display Form of an Instance to reflect the
value of a certain Field. Naturally, when the Field changes, it is desirable to
change the Display Form. This can be achieved by making the Field a Trigger as
illustrated by the following example.

Notice that the Trigger function is invoked both by assignments made within the
Class (as in the assignment in ctor) and those made from outside the Instance.

Chapter 3: Object Oriented Programming 145

:Class MyClass
:Field Public Name
:Field Public Country←'England'
∇ ctor nm

:Access Public
:Implements Constructor
Name←nm

∇
∇ format

:Implements Trigger Name,Country
⎕DF'My name is ',Name,' and I live in ',Country

∇
:EndClass ⍝ MyClass

me←⎕NEW MyClass 'Pete'
me

My name is Pete and I live in England

me.Country←'Greece'
me

My name is Pete and I live in Greece

me.Name←'Kostas'
me

My name is Kostas and I live in Greece

Methods
Methods are implemented as regular defined functions, but with some special
attributes that control how they are called and where they are executed.

A Method is defined by a contiguous block of statements in a Class Script. A
Method begins with a line that contains a ∇, followed by a valid APL defined
function header. The method definition is terminated by a closing ∇.

The behaviour of a Method is defined by an :Access control statement.

Public or Private

Methods may be defined to be Private (the default) or Public.

A Private method may only be invoked by another function that is running inside
the Class namespace or inside an Instance namespace. The name of a Private
method is not visible from outside the Class or an Instance of the Class.

A Public method may be called from outside the Class or an Instance of the Class.

Instance or Shared

Methods may be defined to be Instance (the default) or Shared.

Chapter 3: Object Oriented Programming 146

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

A Shared method runs in the Class namespace and may be called via an Instance or
via the Class. However, a Shared method that is called via an Instance does not
have direct access to the Fields and Properties of that Instance.

Shared methods are typically used to manipulate Shared Properties and Fields or to
provide general services for all Instances that are not Instance specific.

Overridable Methods

Instance Methods may be declared with :Access Overridable.

A Method declared as being Overridable is replaced in situ (i.e. within its own
Class) by a Method of the same name that is defined in a higher Class which itself
is declared with the Override keyword. See Superseding Base Class Methods on
page 148.

Shared Methods
A Shared method runs in the Class namespace and may be called via an Instance or
via the Class. However, a Shared method that is called via an Instance does not
have direct access to the Fields and Properties of that Instance.

Class Parrot has a Speak method that does not require any information about
the current Instance, so may be declared as Shared.

:Class Parrot:Bird

∇ R←Speak times
:Access Public Shared
R←⍕times⍴⊂'Squark!'

∇

:EndClass ⍝ Parrot

wild←⎕NEW Parrot
wild.Speak 2

Squark! Squark!

Note that Parrot.Speak may be executed directly from the Class and does not
in fact require an Instance.

Parrot.Speak 3
Squark! Squark! Squark!

Chapter 3: Object Oriented Programming 147

Instance Methods
An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

Class DomesticParrot has a Speak method defined to be Public and Instance.
Where Speak refers to Name, it obtains the value of Name in the current Instance.

Note too that DomesticParrot.Speak supersedes the inherited
Parrot.Speak.

:Class DomesticParrot: Parrot
:Field Public Name

∇ egg nm
:Access Public
:Implements Constructor
Name←nm

∇

∇ R←Speak times
:Access Public Instance
R←⊂Name,', ',Name
R←↑R,times⍴⊂' Who''s a pretty boy, then!'

∇

:EndClass ⍝ DomesticParrot

pet←⎕NEW DomesticParrot'Polly'
pet.Speak 3

Polly, Polly
Who's a pretty boy, then!
Who's a pretty boy, then!
Who's a pretty boy, then!

bil←⎕NEW DomesticParrot'Billy'
bil.Speak 1

Billy, Billy
Who's a pretty boy, then!

Chapter 3: Object Oriented Programming 148

Superseding Base Class Methods
Normally, a Method defined in a higher Class supersedes the Method of the same
name that is defined in its Base Class, but only for calls made from above or
within the higher Class itself (or an Instance of the higher Class). The base method
remains available in the Base Class and is invoked by a reference to it from within
the Base Class. This behaviour can be altered using the Overridable and Override
key words in the :Access statement but only applies to Instance Methods.

If a Public Instance method in a Class is marked as Overridable, this allows a Class
which derives from the Class with the Overridable method to supersede the Base
Class method in the Base Class, by providing a method which is marked Override.
The typical use of this is to replace code in the Base Class which handles an event,
with a method provided by the derived Class.

For example, the base class might have a method which is called if any error
occurs in the base class:

∇ ErrorHandler
[1] :Access Public Overridable
[2] ⎕←↑⎕DM

∇

In your derived class, you might supersede this by a more sophisticated error
handler, which logs the error to a file:

∇ ErrorHandler;TN
[1] :Access Public Override
[2] ⎕←↑⎕DM
[3] TN←'ErrorLog'⎕FSTIE 0
[4] ⎕DM ⎕FAPPEND TN
[5] ⎕FUNTIE TN

∇

If the derived class had a function which was not marked Override, then function
in the derived class which called ErrorHandler would call the function as
defined in the derived class, but if a function in the base class called
ErrorHandler, it would still see the base class version of this function. With
Override specified, the new function supersedes the function as seen by code in the
base class. Note that different derived classes can specify different Overrides.

In C#, Java and some other compiled languages, the term Virtual is used in place
of Overridable, which is the term used by Visual Basic and Dyalog APL.

Chapter 3: Object Oriented Programming 149

Properties
A Property behaves in a very similar way to an ordinary APL variable. To obtain
the value of a Property, you simply reference its name. To change the value of a
Property, you assign a new value to the name.

However, under the covers, a Property is accessed via a PropertyGet function and
its value is changed via a PropertySet function. Furthermore, Properties may be
defined to allow partial (indexed) retrieval and assignment to occur.

There are three types of Property, namely Simple, Numbered and Keyed.

l A Simple Property is one whose value is accessed (by APL) in its entirety
and re-assigned (by APL) in its entirety.

l A Numbered Property behaves like an array (conceptually a vector) which
is only ever partially accessed and set (one element at a time) via indices.
The Numbered Property is designed to allow APL to perform selections and
structural operations on the Property.

l A Keyed Property is similar to a Numbered Property except that its elements
are accessed via arbitrary keys instead of indices.

The following cases illustrate the difference between Simple and Numbered
Properties.

If Instance MyInst has a Simple Property Sprop and a Numbered Property
Nprop, the expressions

X←MyInst.SProp
X←MyInst.SProp[2]

both cause APL to call the PropertyGet function to retrieve the entire value of
Sprop. The second statement subsequently uses indexing to extract just the
second element of the value.

Whereas, the expression:

X←MyInst.NProp[2]

causes APL to call the PropertyGet function with an additional argument which
specifies that only the second element of the Property is required. Moreover, the
expression:

X←MyInst.NProp

causes APL to call the PropertyGet function successively, for every element of the
Property.

A Property is defined by a :Property ... :EndProperty section in a Class
Script.

Chapter 3: Object Oriented Programming 150

Within the body of a Property Section there may be:

l one or more :Access statements which must appear first in the body of
the Property.

l a single PropertyGet function.
l a single PropertySet function
l a single PropertyShape function

Simple Instance Properties
A Simple Instance Property is one whose value is accessed (by APL) in its entirety
and re-assigned (by APL) in its entirety. The following examples are taken from
the ComponentFile Class (see page 156).

The Simple Property Count returns the number of components on a file.

:Property Count
:Access Public Instance

∇ r←get
r←¯1+2⊃⎕FSIZE tie

∇
:EndProperty ⍝ Count

F1←⎕NEW ComponentFile 'test1'
F1.Append'Hello World'

1
F1.Count

1
F1.Append 42

2
F1.Count

2

Because there is no set function defined, the Property is read-only and attempting
to change it causes SYNTAX ERROR.

F1.Count←99
SYNTAX ERROR

F1.Count←99
^

Chapter 3: Object Oriented Programming 151

The Access Property has both get and set functions which are used, in this
simple example, to get and set the component file access matrix.

:Property Access
:Access Public Instance

∇ r←get
r←⎕FRDAC tie

∇
∇ set am;mat;OK

mat←am.NewValue
:Trap 0

OK←(2=⍴⍴mat)^(3=2⊃⍴mat)^^/,mat=⌊mat
:Else

OK←0
:EndTrap
'bad arg'⎕SIGNAL(~OK)/11
mat ⎕FSTAC tie

∇
:EndProperty ⍝ Access

Note that the set function must be monadic. Its argument, supplied by APL, will
be an Instance of PropertyArguments. This is an internal Class whose
NewValue field contains the value that was assigned to the Property.

Note too that the set function does not have to accept the new value that has been
assigned. The function may validate the value reject or accept it (as in this
example), or perform whatever processing is appropriate.

F1←⎕NEW ComponentFile 'test1'
⍴F1.Access

0 3
F1.Access←3 3⍴28 2105 16385 0 2073 16385 31 ¯1 0

F1.Access
28 2105 16385
0 2073 16385

31 ¯1 0

F1.Access←'junk'
bad arg

F1.Access←'junk'
^

F1.Access←1 2⍴10
bad arg

F1.Access←1 2⍴10
^

Chapter 3: Object Oriented Programming 152

Simple Shared Properties
The ComponentFile Class (see page 156) specifies a Simple Shared Property
named Files which returns the names of all the Component Files in the current
directory.

The previous examples have illustrated the use of Instance Properties. It is also
possible to define Shared properties.

A Shared property may be used to handle information that is relevant to the Class
as a whole, and which is not specific to any a particular Instance.

:Property Files
:Access Public Shared

∇ r←get
r←⎕FLIB''

∇
:EndProperty

Note that ⎕FLIB (invoked by the Files get function) does not report the
names of tied files.

F1←⎕NEW ComponentFile 'test1'
⎕EX'F1'
F2←⎕NEW ComponentFile 'test2'
F2.Files ⍝ NB ⎕FLIB does not report tied files

test1
⎕EX'F2'

Note that a Shared Property may be accessed from the Class itself. It is not
necessary to create an Instance first.

ComponentFile.Files
test1
test2

Numbered Properties
A Numbered Property behaves like an array (conceptually a vector) which is only
ever partially accessed and set (one element at a time) via indices.

To implement a Numbered Property, you must specify a PropertyShape function
and either or both a PropertyGet and PropertySet function.

When an expression references or makes an assignment to a Numbered Property,
APL first calls its PropertyShape function which returns the dimensions of the
Property. Note that the shape of the result of this function determines the rank of
the Property.

Chapter 3: Object Oriented Programming 153

If the expression uses indexing, APL checks that the index or indices are within
the bounds of these dimensions, and then calls the PropertyGet or PropertySet
function. If the expression specifies a single index, APL calls the PropertyGet or
PropertySet function once. If the expression specifies multiple indices, APL calls
the function successively.

If the expression references or assigns the entire Property (without indexing) APL
generates a set of indices for every element of the Property and calls the
PropertyGet or PropertySet function successively for every element in the Property.

Note that APL generates a RANK ERROR if an index contains the wrong number
of elements or an INDEX ERROR if an index is out of bounds.

When APL calls a monadic PropertyGet or PropertySet function, it supplies an
argument of type PropertyArguments.

Example
The ComponentFile Class (see page 156) specifies a Numbered Property named
Component which represents the contents of a specified component on the file.

:Property Numbered Component
:Access Public Instance

∇ r←shape
r←¯1+2⊃⎕FSIZE tie

∇
∇ r←get arg

r←⎕FREAD tie arg.Indexers
∇
∇ set arg

arg.NewValue ⎕FREPLACE tie,arg.Indexers
∇

:EndProperty

F1←⎕NEW ComponentFile 'test1'

F1.Append¨(⍳5)×⊂⍳4
1 2 3 4 5

F1.Count
5

F1.Component[4]
4 8 12 16

4⊃F1.Component
4 8 12 16

(⊂4 3)⌷F1.Component
4 8 12 16 3 6 9 12

Chapter 3: Object Oriented Programming 154

Referencing a Numbered Property in its entirety causes APL to call the get
function successively for every element.

F1.Component
1 2 3 4 2 4 6 8 3 6 9 12 4 8 12 16 5 10 15 20

((⊂4 3)⌷F1.Component)←'Hello' 'World'

F1.Component[3]
World

Attempting to access a Numbered Property with inappropriate indices generates an
error:

F1.Component[6]
INDEX ERROR

F1.Component[6]
^
F1.Component[1;2]

RANK ERROR
F1.Component[1;2]

^

Chapter 3: Object Oriented Programming 155

The Default Property
A single Numbered Property may be identified as the Default Property for the
Class. If a Class has a Default Property, indexing with the ⌷ primitive function and
[...] indexing may be applied to the Property directly via a reference to the
Class or Instance.

The Numbered Property example of the ComponentFile Class (see page 156) can
be extended by adding the control word Default to the :Property statement
for the Component Property.

Indexing may now be applied directly to the Instance F1. In essence, F1[n] is
simply shorthand for F1.Component[n] and n⌷F1 is shorthand for
n⌷F1.Component

:Property Numbered Default Component
:Access Public Instance

∇ r←shape
r←¯1+2⊃⎕FSIZE tie

∇
∇ r←get arg

r←⎕FREAD tie arg.Indexers
∇
∇ set arg

arg.NewValue ⎕FREPLACE tie,arg.Indexers
∇

:EndProperty

F1←⎕NEW ComponentFile 'test1'
F1.Append¨(⍳5)×⊂⍳4

1 2 3 4 5
F1.Count

5

F1[4]
4 8 12 16

(⊂4 3)⌷F1
4 8 12 16 3 6 9 12

((⊂4 3)⌷F1)←'Hello' 'World'
F1[3]

World

Note however that this feature applies only to indexing.

4⊃F1
DOMAIN ERROR

4⊃F1
^

Chapter 3: Object Oriented Programming 156

ComponentFile Class
:Class ComponentFile

:Field Private Instance tie

∇ Open filename
:Implements Constructor
:Access Public Instance
:Trap 0

tie←filename ⎕FTIE 0
:Else

tie←filename ⎕FCREATE 0
:EndTrap
⎕DF filename,'(Component File)'

∇

∇ Close
:Access Public Instance
⎕FUNTIE tie

∇

∇ r←Append data
:Access Public Instance
r←data ⎕FAPPEND tie

∇

∇ Replace(comp data)
:Access Public Instance
data ⎕FREPLACE tie,comp

∇

:Property Count
:Access Public Instance

∇ r←get
r←¯1+2⊃⎕FSIZE tie

∇
:EndProperty ⍝ Count

Chapter 3: Object Oriented Programming 157

Component File Class Example (continued)

:Property Access
:Access Public Instance

∇ r←get arg
r←⎕FRDAC tie

∇
∇ set am;mat;OK

mat←am.NewValue
:Trap 0

OK←(2=⍴⍴mat)^(3=2⊃⍴mat)^^/,mat=⌊mat
:Else

OK←0
:EndTrap
'bad arg'⎕SIGNAL(~OK)/11
mat ⎕FSTAC tie

∇
:EndProperty ⍝ Access

:Property Files
:Access Public Shared

∇ r←get
r←⎕FLIB''

∇
:EndProperty

:Property Numbered Default Component
:Access Public Instance

∇ r←shape args
r←¯1+2⊃⎕FSIZE tie

∇
∇ r←get arg

r←⊂⎕FREAD tie,arg.Indexers
∇
∇ set arg

(⊃arg.NewValue)⎕FREPLACE tie,arg.Indexers
∇

:EndProperty

∇ Delete file;tie
:Access Public Shared
tie←file ⎕FTIE 0
file ⎕FERASE tie

∇
:EndClass ⍝ Class ComponentFile

Chapter 3: Object Oriented Programming 158

Keyed Properties
A Keyed Property is similar to a Numbered Property except that it may only be
accessed by indexing (so-called square-bracket indexing) and indices are not
restricted to integers but may be arbitrary arrays.

To implement a Keyed Property, only a get and/or a set function are required.
APL does not attempt to validate or resolve the specified indices in any way, so
does not require the presence of a shape function for the Property.

However, APL does check that the rank and lengths of the indices correspond to
the rank and lengths of the array to the right of the assignment (for an indexed
assignment) and the array returned by the get function (for an indexed reference). If
the rank or shape of these arrays fails to conform to the rank or shape of the
indices, APL will issue a RANK ERROR or LENGTH ERROR.

Note too that indices may be elided. If KProp is a Keyed Property of Instance I1,
the following expressions are all valid.

I1.KProp
I1.KProp[]←10
I1.KProp[;]←10
I1.KProp['One' 'Two';]←10
I1.KProp[;'One' 'Two']←10

When APL calls a monadic get or a set function, it supplies an argument of type
PropertyArguments, which identifies which dimensions and indices were specified.
See PropertyArguments Class on page 191.

The Sparse2 Class illustrates the implementation and use of a Keyed Property.

Sparse2 represents a 2-dimensional sparse array each of whose dimensions are
indexed by arbitrary character keys. The sparse array is implemented as a Keyed
Property named Values. The following expressions show how it might be used.

SA1←⎕NEW Sparse2
SA1.Values[⊂'Widgets';⊂'Jan']←100
SA1.Values[⊂'Widgets';⊂'Jan']

100
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar'

'Oct']←10×2 3⍴⍳6
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']

10 20 30
40 50 60

SA1.Values[⊂'Widgets';'Jan' 'Oct']
10 30

SA1.Values['Grommets' 'Widgets';⊂'Oct']
60
30

Chapter 3: Object Oriented Programming 159

Sparse2 Class Example

:Class Sparse2 ⍝ 2D Sparse Array
:Field Private keys
:Field Private values
∇ make

:Access Public
:Implements Constructor
keys←0⍴⊂'' ''
values←⍬

∇
:Property Keyed Values
:Access Public Instance

∇ v←get arg;k
k←arg.Indexers
⎕SIGNAL(2≠⍴k)/4
k←fixkeys k
v←(values,0)[keys⍳k]

∇
∇ set arg;new;k;v;n

v←arg.NewValue
k←arg.Indexers
⎕SIGNAL(2≠⍴k)/4
k←fixkeys k
v←(⍴k)(⍴⍣(⊃1=⍴,v))v
⎕SIGNAL((⍴k)≠⍴v)/5
k v←,¨k v
:If ∨/new←~k∊keys

values,←new/v
keys,←new/k
k v/⍨←⊂~new

:EndIf
:If 0<⍴k

values[keys⍳k]←v
:EndIf

∇
:EndProperty

∇ k←fixkeys k
k←(2≠≡¨k){,(⊂⍣⍺)⍵}¨k
k←⊃(∘.{⊃,/⊂¨⍺ ⍵})/k

∇
:EndClass ⍝ 2D Sparse Array

Internally, Sparse2 maintains a list of keys and a list of values which are
initialised to empty arrays by its constructor.

When an indexed assignment is made, the set function receives a list of keys
(indices) in arg.Indexer and values in arg.NewValue. The function updates
the values of existing keys, and adds new keys and their values to the internal
lists.

Chapter 3: Object Oriented Programming 160

When an indexed reference is made, the get function receives a list of keys
(indices) in arg.Indexer. The function uses these keys to retrieve the
corresponding values, inserting 0s for non-existent keys.

Note that in the expression:

SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']

the structure of arg.Indexer is:

.→---.
| .→---------------------. .→------------------. |
	.→------. .→-------.		.→--. .→--. .→--.											
		Widgets		Grommets				Jan		Mar		Oct		
	'-------' '--------'		'---' '---' '---'											
'∊---------------------' '∊------------------'														
'∊---'

Chapter 3: Object Oriented Programming 161

Example
A second example of a Keyed Property is provided by the KeyedFile Class
which is based upon the ComponentFile Class (see page 156) used previously.

:Class KeyedFile: ComponentFile
:Field Public Keys
⎕ML←0

∇ Open filename
:Implements Constructor :Base filename
:Access Public Instance
:If Count>0

Keys←{⊃⍵⊃⎕BASE.Component}¨⍳Count
:Else

Keys←0⍴⊂''
:EndIf

∇

:Property Keyed Component
:Access Public Instance

∇ r←get arg;keys;sink
keys←⊃arg.Indexers
⎕SIGNAL(~^/keys∊Keys)/3
r←{2⊃⍵⊃⎕BASE.Component}¨Keys⍳keys

∇
∇ set arg;new;keys;vals

vals←arg.NewValue
keys←⊃arg.Indexers
⎕SIGNAL((⍴,keys)≠⍴,vals)/5
:If ∨/new←~keys∊Keys

sink←Append¨↓⍉↑(⊂new)/¨keys vals
Keys,←new/keys
keys vals/⍨←⊂~new

:EndIf
:If 0<⍴,keys

Replace¨↓⍉↑(Keys⍳keys)(↓⍉↑keys vals)
:EndIf

∇
:EndProperty

:EndClass ⍝ Class KeyedFile

Chapter 3: Object Oriented Programming 162

K1←⎕NEW KeyedFile 'ktest'
K1.Count

0
K1.Component[⊂'Pete']←42
K1.Count

1
K1.Component['John' 'Geoff']←(⍳10)(3 4⍴⍳12)
K1.Count

3
K1.Component['Geoff' 'Pete']

1 2 3 4 42
5 6 7 8
9 10 11 12

K1.Component['Pete' 'Morten']←(3 4⍴'∘')(⍳⍳3)
K1.Count

4
K1.Component['Morten' 'Pete' 'John']

1 1 1 1 1 2 1 1 3 ∘∘∘∘ 1 2 3 4 5 6 7 8 9 10
1 2 1 1 2 2 1 2 3 ∘∘∘∘

∘∘∘∘

Interfaces
An Interface is defined by a Script that contains skeleton declarations of Properties
and/or Methods. These members are only place-holders; they have no specific
implementation; this is provided by each of the Classes that support the Interface.

An Interface contains a collection of methods and properties that together
represents a protocol that an application must follow in order to manipulate a
Class in a particular way.

An example might be an Interface called Icompare that provides a single method
(Compare) which compares two Instances of a Class, returning a value to indicate
which of the two is greater than the other. A Class that implements Icompare must
provide an appropriate Compare method, but every Class will have its own
individual version of Compare. An application can then be written that sorts
Instances of any Class that supports the ICompare Interface.

An Interface is implemented by a Class if it includes the name of the Interface in
its :Class statement, and defines a corresponding set of the Methods and Properties
that are declared in the Interface.

To implement a Method, a function defined in the Class must include a
:Implements Method statement that maps it to the corresponding Method
defined in the Interface:

:Implements Method <InterfaceName.MethodName>

Chapter 3: Object Oriented Programming 163

Furthermore, the syntax of the function (whether it be result returning, monadic or
niladic) must exactly match that of the method described in the Interface. The
function name, however, need not be the same as that described in the Interface.

Similarly, to implement a Property the type (Simple, Numbered or Keyed) and
syntax (defined by the presence or absence of a PropertyGet and PropertySet
functions) must exactly match that of the property described in the Interface. The
Property name, however, need not be the same as that described in the Interface.

Penguin Class Example
The Penguin Class example illustrates the use of Interfaces to implement multiple
inheritance.

:Interface FishBehaviour
∇ R←Swim ⍝ Returns description of swimming capability
∇
:EndInterface ⍝ FishBehaviour

:Interface BirdBehaviour
∇ R←Fly ⍝ Returns description of flying capability
∇
∇ R←Lay ⍝ Returns description of egg-laying behaviour
∇
∇ R←Sing ⍝ Returns description of bird-song
∇
:EndInterface ⍝ BirdBehaviour

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
∇ R←NoCanFly

:Implements Method BirdBehaviour.Fly
R←'Although I am a bird, I cannot fly'

∇
∇ R←LayOneEgg

:Implements Method BirdBehaviour.Lay
R←'I lay one egg every year'

∇
∇ R←Croak

:Implements Method BirdBehaviour.Sing
R←'Croak, Croak!'

∇
∇ R←Dive

:Implements Method FishBehaviour.Swim
R←'I can dive and swim like a fish'

∇
:EndClass ⍝ Penguin

Chapter 3: Object Oriented Programming 164

In this case, the Penguin Class derives from Animal but additionally supports
the BirdBehaviour and FishBehaviour Interfaces, thereby inheriting
members from both.

Pingo←⎕NEW Penguin
⎕CLASS Pingo

#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour ⎕CLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour ⎕CLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour ⎕CLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour ⎕CLASS Pingo).Sing
Croak, Croak!

Including Namespaces in Classes
A Class may import methods from one or more plain Namespaces. This allows
several Classes to share a common set of methods, and provides a degree of
multiple inheritance.

To import methods from a Namespace NS, the Class Script must include a
statement:

:Include NS

When the Class is fixed by the editor or by ⎕FIX, all the defined functions and
operators in Namespace NS are included as methods in the Class. The functions
and operators which are brought in as methods from the namespace NS are treated
exactly as if the source of each function/operator had been included in the class
script at the point of the :Include statement. For example, if a function contains
:Signature or :Access statements, these will be taken into account. Note
that such declarations have no effect on a function/operator which is in an ordinary
namespace.

Dfns and dops in NS are also included in the Class but as Private members,
because dfns and dops may not contain :Signature or :Access statements.
Variables and Sub-namespaces in NS are not included.

Note that objects imported in this way are not actually copied, so there is no
penalty incurred in using this feature. Additions, deletions and changes to the
functions in NS are immediately reflected in the Class.

If there is a member in the Class with the same name as a function in NS, the Class
member takes precedence and supersedes the function in NS.

Chapter 3: Object Oriented Programming 165

Conversely, functions in NS will supersede members of the same name that are
inherited from the Base Class, so the precedence is:

Class supersedes

Included Namespace, supersedes

Base Class

Any number of Namespaces may be included in a Class and the :Include
statements may occur anywhere in the Class script. However, for the sake of
readability, it is recommended that you have :Include statements at the top,
given that any definitions in the script will supersede included functions and
operators.

For information on copying classes that reference namespaces in this way, see
Programming Reference Guide: Copy System Command.

Example
In this example, Class Penguin inherits from Animal and includes functions
from the plain Namespaces BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

:EndClass ⍝ Penguin

Namespace BirdStuff contains 2 functions, both declared as Public methods.

:Namespace BirdStuff
∇ R←Fly

:Access Public Instance
R←'Fly, Fly ...'

∇
∇ R←Lay

:Access Public Instance
R←'Lay, Lay ...'

∇
:EndNamespace ⍝ BirdStuff

Chapter 3: Object Oriented Programming 166

Namespace FishStuff contains a single function, also declared as a Public
method.

:Namespace FishStuff
∇ R←Swim

:Access Public Instance
R←'Swim, Swim ...'

∇
:EndNamespace ⍝ FishStuff

Pingo←⎕NEW Penguin
Pingo.Swim

Swim, Swim ...
Pingo.Lay

Lay, Lay ...
Pingo.Fly

Fly, Fly ...

This is getting silly - we all know that Penguin's can't fly. This problem is simply
resolved by overriding the BirdStuff.Fly method with Penguin.Fly. We
can hide BirdStuff.Fly with a Private method in Penguin that does nothing.
For example:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
∇ Fly ⍝ Override BirdStuff.Fly
∇

:EndClass ⍝ Penguin

Pingo←⎕NEW Penguin
Pingo.Fly

VALUE ERROR
Pingo.Fly

^

or we can supersede it with a different Public method, as follows:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
∇ R←Fly ⍝ Override BirdStuff.Fly

:Access Public Instance
R←'Sadly, I cannot fly'

∇
:EndClass ⍝ Penguin

Pingo←⎕NEW Penguin
Pingo.Fly

Sadly, I cannot fly

Chapter 3: Object Oriented Programming 167

Nested Classes
It is possible to define Classes within Classes (Nested Classes).

A Nested Class may be either Private or Public. This is specified by a :Access
Statement, which must precede the definition of any Class contents. The default is
Private.

A Public Nested Class is visible from outside its containing Class and may be
used directly in its own right, whereas a Private Nested Class is not and may
only be used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

GolfService Example Class
:Class GolfService
:Using System

:Field Private GOLFILE←'' ⍝ Name of Golf data file
:Field Private GOLFID←0 ⍝ Tie number Golf data file

:Class GolfCourse
:Field Public Code←¯1
:Field Public Name←''

∇ ctor args
:Implements Constructor
:Access Public Instance
Code Name←args
⎕DF Name,'(',(⍕Code),')'

∇

:EndClass

Chapter 3: Object Oriented Programming 168

:Class Slot
:Field Public Time
:Field Public Players

∇ ctor1 t
:Implements Constructor
:Access Public Instance
Time←t
Players←0⍴⊂''

∇
∇ ctor2 (t pl)

:Implements Constructor
:Access Public Instance
Time Players←t pl

∇
∇ format

:Implements Trigger Players
⎕DF⍕Time Players

∇
:EndClass

:Class Booking
:Field Public OK
:Field Public Course
:Field Public TeeTime
:Field Public Message

∇ ctor args
:Implements Constructor
:Access Public Instance
OK Course TeeTime Message←args

∇
∇ format

:Implements Trigger OK,Message
⎕DF⍕Course TeeTime(⊃OK⌽Message'OK')

∇
:EndClass

Chapter 3: Object Oriented Programming 169

:Class StartingSheet
:Field Public OK
:Field Public Course
:Field Public Date
:Field Public Slots←⎕NULL
:Field Public Message

∇ ctor args
:Implements Constructor
:Access Public Instance
OK Course Date←args

∇
∇ format

:Implements Trigger OK,Message
⎕DF⍕2 1⍴(⍕Course Date)(↑⍕¨Slots)

∇
:EndClass

∇ ctor file
:Implements Constructor
:Access Public Instance
GOLFILE←file
⎕FUNTIE(((↓⎕FNAMES)~' ')⍳⊂GOLFILE)⊃⎕FNUMS,0
:Trap 22

GOLFID←GOLFILE ⎕FTIE 0
:Else

InitFile
:EndTrap

∇

∇ dtor
:Implements Destructor
⎕FUNTIE GOLFID

∇

∇ InitFile;COURSECODES;COURSES;INDEX;I
:Access Public
:If GOLFID≠0

GOLFILE ⎕FERASE GOLFID
:EndIf
GOLFID←GOLFILE ⎕FCREATE 0
COURSECODES←1 2 3
COURSES←'St Andrews' 'Hindhead' 'Basingstoke'
INDEX←(⍴COURSES)⍴0
COURSECODES COURSES INDEX ⎕FAPPEND GOLFID
:For I :In ⍳⍴COURSES

INDEX[I]←⍬ ⍬ ⎕FAPPEND 1
:EndFor
COURSECODES COURSES INDEX ⎕FREPLACE GOLFID 1

∇

Chapter 3: Object Oriented Programming 170

∇ R←GetCourses;COURSECODES;COURSES;INDEX
:Access Public
COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
R←{⎕NEW GolfCourse ⍵}¨↓⍉↑COURSECODES COURSES

∇

∇ R←GetStartingSheet
ARGS;CODE;COURSE;DATE;COURSECODES

;COURSES;INDEX;COURSEI;IDN
;DATES;COMPS;IDATE;TEETIMES
;GOLFERS;I;T

:Access Public
CODE DATE←ARGS
COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
COURSEI←COURSECODES⍳CODE
COURSE←⎕NEW GolfCourse(CODE(COURSEI⊃COURSES,⊂''))
R←⎕NEW StartingSheet(0 COURSE DATE)
:If COURSEI>⍴COURSECODES

R.Message←'Invalid course code'
:Return

:EndIf
IDN←2 ⎕NQ'.' 'DateToIDN',DATE.(Year Month Day)
DATES COMPS←⎕FREAD GOLFID,COURSEI⊃INDEX
IDATE←DATES⍳IDN
:If IDATE>⍴DATES

R.Message←'No Starting Sheet available'
:Return

:EndIf
TEETIMES GOLFERS←⎕FREAD GOLFID,IDATE⊃COMPS
T←DateTime.New¨(⊂DATE.(Year Month Day)),¨↓[1]

24 60 1⊤TEETIMES
R.Slots←{⎕NEW Slot ⍵}¨T,∘⊂¨↓GOLFERS
R.OK←1

∇

Chapter 3: Object Oriented Programming 171

∇ R←MakeBooking ARGS;CODE;COURSE;SLOT;TEETIME
;COURSECODES;COURSES;INDEX
;COURSEI;IDN;DATES;COMPS;IDATE
;TEETIMES;GOLFERS;OLD;COMP;HOURS
;MINUTES;NEAREST;TIME;NAMES;FREE
;FREETIMES;I;J;DIFF

:Access Public
⍝ If GimmeNearest is 0, tries for specified time

⍝ If GimmeNearest is 1, gets nearest time
CODE TEETIME NEAREST←3↑ARGS
COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
COURSEI←COURSECODES⍳CODE
COURSE←⎕NEW GolfCourse(CODE(COURSEI⊃COURSES,⊂''))
SLOT←⎕NEW Slot TEETIME
R←⎕NEW Booking(0 COURSE SLOT'')
:If COURSEI>⍴COURSECODES

R.Message←'Invalid course code'
:Return

:EndIf
:If TEETIME.Now>TEETIME

R.Message←'Requested tee-time is in the past'
:Return

:EndIf
:If TEETIME>TEETIME.Now.AddDays 30

R.Message←'Requested tee-time is more than 30
days from now'

:Return
:EndIf
IDN←2 ⎕NQ'.' 'DateToIDN',TEETIME.(Year Month Day)
DATES COMPS←⎕FREAD GOLFID,COURSEI⊃INDEX
IDATE←DATES⍳IDN
:If IDATE>⍴DATES

TEETIMES←(24 60⊥7 0)+10×¯1+⍳1+8×6
GOLFERS←((⍴TEETIMES),4)⍴⊂''llowed per tee time
:If 0=OLD←⊃(DATES<2 ⎕NQ'.' 'DateToIDN',3↑⎕TS)/

⍳⍴DATES
COMP←(TEETIMES GOLFERS)⎕FAPPEND GOLFID
DATES,←IDN
COMPS,←COMP
(DATES COMPS)⎕FREPLACE GOLFID,COURSEI⊃INDEX

:Else
DATES[OLD]←IDN
(TEETIMES GOLFERS)⎕FREPLACE GOLFID,

COMP←OLD⊃COMPS
DATES COMPS ⎕FREPLACE GOLFID,COURSEI⊃INDEX

:EndIf

Chapter 3: Object Oriented Programming 172

:Else
COMP←IDATE⊃COMPS
TEETIMES GOLFERS←⎕FREAD GOLFID COMP

:EndIf
HOURS MINUTES←TEETIME.(Hour Minute)
NAMES←(3↓ARGS)~⍬''
TIME←24 60⊥HOURS MINUTES
TIME←10×⌊0.5+TIME÷10
:If ~NEAREST

I←TEETIMES⍳TIME
:If I>⍴TEETIMES
:OrIf (⍴NAMES)>⊃,/+/0=⍴¨GOLFERS[I;]

R.Message←'Not available'
:Return

:EndIf
:Else

:If ~∨/FREE←(⍴NAMES)≤⊃,/+/0=⍴¨GOLFERS
R.Message←'Not available'
:Return

:EndIf
FREETIMES←(FREE×TEETIMES)+32767×~FREE
DIFF←|FREETIMES-TIME
I←DIFF⍳⌊/DIFF

:EndIf
J←(⊃,/0=⍴¨GOLFERS[I;])/⍳4
GOLFERS[I;(⍴NAMES)↑J]←NAMES
(TEETIMES GOLFERS)⎕FREPLACE GOLFID COMP
TEETIME←DateTime.New TEETIME.(Year Month Day),

3↑24 60⊤I⊃TEETIMES
SLOT.Time←TEETIME
SLOT.Players←(⊃,/0<⍴¨GOLFERS[I;])/GOLFERS[I;]
R.(OK TeeTime)←1 SLOT

∇

:EndClass

Chapter 3: Object Oriented Programming 173

GolfService Example
The GolfService Example Class illustrates the use of nested classes. GolfService
was originally developed as a Web Service for Dyalog.NET and is one of the
samples distributed in samples\asp.net\webservices. This version has been
reconstructed as a stand-alone APL Class.

GolfService contains the following nested classes, all of which are Private.

GolfCourse A Class that represents a Golf Course, having Fields Code and
Name.

Slot
A Class that represents a tee-time or match, having Fields
Time and Players. Up to 4 players may play together in a
match.

Booking

A Class that represents a reservation for a particular tee-time at
a particular golf course. This has Fields OK, Course,
TeeTime and Message. The value of TeeTime is an
Instance of a Slot Class.

StartingSheet
A Class that represents a day's starting-sheet at a particular golf
course. It has Fields OK, Course, Date, Slots, Message.
Slots is an array of Instances of Slot Class.

The GolfService constructor takes the name of a file in which all the data is stored.
This file is initialised by method InitFile if it doesn't already exist.

G←⎕NEW GolfService 'F:\HELP11.0\GOLFDATA'
G

#.[Instance of GolfService]

The GetCourses method returns an array of Instances of the internal (nested) Class
GolfCourse. Notice how the display form of each Instance is established by the
GolfCourse constructor, to obtain the output display shown below.

G.GetCourses
St Andrews(1) Hindhead(2) Basingstoke(3)

All of the dates and times employ instances of the .NET type System.DateTime,
and the following statements just set up some temporary variables for convenience
later.

⎕←Tomorrow←(⎕NEW DateTime(3↑⎕TS)).AddDays 1
31/03/2006 00:00:00

⎕←TomorrowAt7←Tomorrow.AddHours 7
31/03/2006 07:00:00

Chapter 3: Object Oriented Programming 174

The MakeBooking method takes between 4 and 7 parameters viz.

l the code for the golf course at which the reservation is required
l the date and time of the reservation
l a flag to indicate whether or not the nearest available time will do
l a list of up to 4 players who wish to book that time.

l the code for the golf course at which the reservation is required
l the date and time of the reservation
l a flag to indicate whether or not the nearest available time will do
l a list of up to 4 players who wish to book that time.

The result is an Instance of the internal Class Booking. Once again, ⎕DF is used to
make the default display of these Instances meaningful. In this case, the reservation
is successful.

G.MakeBooking 2 TomorrowAt7 1 'Pete' 'Tiger'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger OK

Bob, Arnie and Jack also ask to play at 7:00 but are given the 7:10 tee-time
instead (4-player restriction).

G.MakeBooking 2 TomorrowAt7 1 'Bob' 'Arnie' 'Jack'
Hindhead(2) 31/03/2006 07:10:00 Bob Arnie Jack

OK

However, Pete and Tiger are joined at 7:00 by Dave and Al.

G.MakeBooking 2 TomorrowAt7 1 'Dave' 'Al'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger Dave

Al OK

Up to now, all bookings have been made with the tee-time flexibility flag set to 1.
Inflexible Jim is only interested in playing at 7:00...

G.MakeBooking 2 TomorrowAt7 0 'Jim'
Hindhead(2) 31/03/2006 07:00:00 Not available

... so his reservation fails (4-player restriction).

Finally the GetStartingSheet method is used to obtain an Instance of the internal
Class StartingSheet for the given course and day.

G.GetStartingSheet 2 Tomorrow
Hindhead(2) 31/03/2006 00:00:00
31/03/2006 07:00:00 Pete Tiger Dave Al
31/03/2006 07:10:00 Bob Arnie Jack
31/03/2006 07:20:00
....

Chapter 3: Object Oriented Programming 175

Namespace Scripts
A Namespace Script is a script that begins with a :Namespace statement and
ends with a :EndNamespace statement. When a Namespace Script is fixed, it
establishes an entire namespace that may contain other namespaces, functions,
variables and classes.

The names of Classes defined within a Namespace Script which are parents,
children, or siblings are visible both to one another and to code and expressions
defined in the same script, regardless of the namespace hierarchy within it. Names
of Classes which are nieces or nephews and their descendants are however not
visible.

For example:

:Namespace a

d←⎕NEW a1
e←⎕NEW bb2

:Class a1
∇ r←foo

:Access Shared Public
r←⎕NEW¨b1 b2

∇
:EndClass ⍝ a1

∇ r←goo
r←a1.foo

∇

∇ r←foo
r←⎕NEW¨b1 b2

∇

:Namespace b
:Class b1
:EndClass ⍝ b1
:Class b2

:Class bb2
:EndClass ⍝ bb2

:EndClass ⍝ b2
:EndNamespace ⍝ b

:EndNamespace ⍝ a

Chapter 3: Object Oriented Programming 176

a.d
#.a.[a1]

a.e
#.a.[bb2]

a.foo
#.a.[b1] #.a.[b2]

Note that the names of Classes b1 (a.b.b1) and b2 (a.b.b2) are not visible
from their "uncle" a1 (a.a1).

a.goo
VALUE ERROR
foo[2] r←⎕NEW¨b1 b2

Notice that Classes in a Namespace Script are fixed before other objects (hence the
assignments to d and e are evaluated after Classes a1 and bb2 are fixed),
although the order in which Classes themselves are defined is still important if
they reference one another during initialisation.

Changing Scripted Objects Dynamically
The source of a scripted object can only be altered using the Editor, or by refixing
it in its entirety using ⎕FIX. Dynamic changes to variables, fields and properties,
and calling ⎕FX to generate functions do not alter the source of a scripted object.

Furthermore, if you introduce new objects of any type (functions, variables, or
classes) into a namespace or a class defined by a script by any means other than
editing the script, then these objects will be lost the next time the script is edited
and fixed.

If you fix a function using ⎕FX with the same name as a function defined in the
script, this new version will supercede the version defined from the script, although
the version in the script will remain unchanged.

If you edit the function (as opposed to editing the script) the Editor will show the
new version of the function.

If however you edit the script, the Editor will display the original version of the
function embedded in the script.

If you were to edit both the script and the function, the Editor would show the two
different versions of the function as illustrated in the example that follows.

When you fix the script, the version of the function in the script will replace the
one created using ⎕FX.

Chapter 3: Object Oriented Programming 177

Example

:Namespace ns
∇ foo

1
∇

:EndNamespace

ns.foo
1

ns.⎕fx 'foo' '2'
ns.foo

2
)ed ns.foo ns

Note that the Editor displays the description Unscripted Function in the
status bar of the window showing the new version of foo.

Similarly, if you were to Trace the execution of ns.foo, the Tracer would display
the current (⎕FX'ed) version of foo, with the same description in its status bar.

Chapter 3: Object Oriented Programming 178

Namespace Script Example
The DiaryStuff example illustrates the manner in which classes may be defined and
used in a Namespace script.

DiaryStuff defines two Classes named Diary and DiaryEntry.

Diary contains a (private) Field named entries, which is simply a vector of
instances of DiaryEntry. These are 2-element vectors containing a .NET
DateTime object and a description.

The entries Field is initialised to an empty vector of DiaryEntry instances
which causes the invocation of the default constructor DiaryEntry.Make0
when Diary is fixed. See Empty Arrays of Instances: Why ? on page 130 for
further explanation.

The entries Field is referenced through the Entry Property, which is defined as
the Default Property. This allows individual entries to be referenced and changed
using indexing on a Diary Instance.

Note that DiaryEntry is defined in the script first (before Diary) because it is
referenced by the initialisation of the Diaries.entries Field

:Namespace DiaryStuff
:Using System

:Class DiaryEntry
:Field Public When
:Field Public What
∇ Make(ymdhm wot)

:Access Public
:Implements Constructor
When What←(⎕NEW DateTime(6↑5↑ymdhm))wot
⎕DF⍕When What

∇
∇ Make0

:Access Public
:Implements Constructor
When What←⎕NULL''

∇
:EndClass ⍝ DiaryEntry

Chapter 3: Object Oriented Programming 179

:Class Diary
:Field Private entries←0⍴⎕NEW DiaryEntry
∇ R←Add(ymdhm wot)

:Access Public
R←⎕NEW DiaryEntry(ymdhm wot)
entries,←R

∇
∇ R←DoingOn ymd;X

:Access Public
X←,(↑entries.When.(Year Month Day))^.=3 1⍴3↑ymd
R←X/entries

∇
∇ R←Remove ymdhm;X

:Access Public
:If R←∨/X←entries.When=⎕NEW DateTime(6↑5↑ymdhm)

entries←(~X)/entries
:EndIf

∇
:Property Numbered Default Entry

∇ R←Shape
R←⍴entries

∇
∇ R←Get arg

R←arg.Indexers⊃entries
∇
∇ Set arg

entries[arg.Indexers]←arg.NewValue
∇

:EndProperty
:EndClass ⍝ Diary

:EndNamespace

Create a new instance of Diary.

D←⎕NEW DiaryStuff.Diary

Add a new entry "meeting with John at 09:00 on April 30th"

D.Add(2006 4 30 9 0)'Meeting with John'
30/04/2006 09:00:00 Meeting with John

Add another diary entry "Dentist at 10:00 on April 30th".

D.Add(2006 4 30 10 0)'Dentist'
30/04/2006 10:00:00 Dentist

Chapter 3: Object Oriented Programming 180

One of the benefits of the Namespace Script is that Classes defined within it
(which are typically related) may be used independently, so we can create a stand-
alone instance of DiaryEntry; "Doctor at 11:00"...

Doc←⎕NEW DiaryStuff.DiaryEntry((2006 4 30 11
0)'Doctor')

Doc
30/04/2006 11:00:00 Doctor

... and then use it to replace the second Diary entry with indexing:

D[2]←Doc

and just to confirm it is there...

D[2]
30/04/2006 11:00:00 Doctor

What am I doing on the 30th?

D.DoingOn 2006 4 30
30/04/2006 09:00:00 Meeting with John ...
... 30/04/2006 11:00:00 Doctor

Remove the 11:00 appointment...

D.Remove 2006 4 30 11 0
1

and the complete Diary is...

⌷D
30/04/2006 09:00:00 Meeting with John

Including Script Files in Scripts
A Class or Namespace script in the workspace or in a script file may specify that
other script files are to be loaded prior to the fixing of the script itself. To do so, it
must begin with one or more :Require statements, with the following syntax:

:Require file://[path]/file

If no path is specified, the path is taken to be relative to the current script file or,
if in a workspace script, the current working directory. Note that a leading './'
or '.\' in path is not allowed, to avoid any potential confusion with "current
directory".

:Require is a directive to the Editor (more specifically, to the internal
mechanism that fixes a script as an object in the workspace) and can appear in any
script containing APL code, but must precede all code in the script. :Require is
thus not valid within a function, class, namespace or any other definition.

Chapter 3: Object Oriented Programming 181

The prefix file:// allows for the possibility of a future extension of http://
and ftp://.

In version 18.0 ⍝!:require is a synonym for :Require. This allows the user
to create scripts which can be used in multiple versions of Dyalog; in 14.1 and
earlier SALT parses ⍝!:require statements and loads the appropriate files, in
18.0 it is the interpreter loads the file named in ⍝!:require statements. Dyalog
intends to remove support for the ⍝!:require statement from the interpreter in a
future version. Note that unlike :Require, ⍝!:require can appear within
code.

Class Declaration Statements
This section summarises the various declaration statements that may be included in
a Class or Namespace Script. For information on other declaration statements, as
they apply to functions and methods, see Function Declaration Statements on
page 70.

:Interface Statement
:Interface <interface name>
...
:EndInterface

An Interface is defined by a Script containing skeleton declarations of Properties
and/or Methods. The script must begin with a :Interface Statement and
end with a :EndInterface Statement.

An Interface may not contain Fields.

Properties and Methods defined in an Interface, and the Class functions that
implement the Interface, may not contain :Access Statements.

:Namespace Statement
:Namespace <namespace name>
...
:EndNamespace

A Namespace Script may be used to define an entire namespace containing other
namespaces, functions, variables and Classes.

A Namespace script must begin with a :Namespace statement and end with a
:EndNamespace statement.

Sub-namespaces, which may be nested, are defined by pairs of :Namespace and
:EndNamespace statements within the Namespace script.

Chapter 3: Object Oriented Programming 182

Classes are defined by pairs of :Class and :EndClass statements within the
Namespace script, and these too may be nested.

The names of Classes defined within a Namespace Script are visible both to one
another and to code and expressions defined in the same script, regardless of the
namespace hierarchy within it.

A Namespace script is therefore particularly useful to group together Classes that
refer to one another where the use of nested classes is inappropriate.

:Class Statement
:Class <class name><:base class name> <,interface
name...>

:Include <namespace>
...
:EndClass

A class script begins with a :Class statement and ends with a :EndClass
statement. The elements that comprise the :Class statement are as follows:

Element Description

class
name

Optionally, specifies the name of the Class, which must
conform to the rules governing APL names.

base
class
name

Optionally specifies the name of a Class from which this Class
is derived and whose members this Class inherits.

interface
name

The names of one or more Interfaces which this Class supports.

A Class may import methods defined in separate plain Namespaces with one or
more :Include statements. For further details, see Including Namespaces in
Classes on page 164.

Examples:

The following statements define a Class named Penguin that derives from (is
based upon) a Class named Animal and which supports two Interfaces named
BirdBehaviour and FishBehaviour.

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
...
:EndClass

Chapter 3: Object Oriented Programming 183

The following statements define a Class named Penguin that derives from (is
based upon) a Class named Animal and includes methods defined in two separate
Namespaces named BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
...
:EndClass

:Using Statement
:Using <NameSpace[,Assembly]>

This statement specifies a .NET namespace that is to be searched to resolve
unqualified names of .NET types referenced by expressions in the Class.

Element Description

NameSpace Specifies a .NET namespace.

Assembly

Specifies the Assembly in which NameSpace is located. If the
Assembly is located in the Microsoft.NET installation
directory, you need only specify its name. If not, you must
specify a full or relative pathname.

If the Microsoft .NET Framework is installed, the System namespace
inmscorlib.dll is automatically loaded when Dyalog APL starts. To access
this namespace, it is not necessary to specify the name of the Assembly.

When the class is fixed, ⎕USING is inherited from the surrounding space. Each
:Using statement appends an element to ⎕USING, with the exception of
:Using with no argument:

If you omit <Namespace>, this is equivalent to clearing ⎕USING, which means
that no .NET namespaces will be searched (unless you follow this statement with
additional :Using statements, each of which will append to ⎕USING).

To set ⎕USING, to a single empty character vector, which only allows references
to fully qualified names of classes in mscorlib.dll, you must write:

:Using , (note the presence of the comma)

or

:Using ,mscorlib.dll

i.e. specify an empty namespace name followed by no assembly, or followed by
the default assembly, which is always loaded.

Chapter 3: Object Oriented Programming 184

:Attribute Statement
:Attribute <Name> [ConstructorArgs]

The :Attribute statement is used to attach .NET Attributes to a Class or a Method.

Attributes are descriptive tags that provide additional information about
programming elements. Attributes are not used by Dyalog APL but other
applications can refer to the extra information in attributes to determine how these
items can be used. Attributes are saved with the metadata of Dyalog APL .NET
assemblies.

Element Description

Name The name of a .NET attribute

ConstructorArgs Optional arguments for the Attribute constructor

Example

The following Class has SerializableAttribute and
CLSCompliantAttribute attributes attached to the Class as a whole, and
ObsoleteAttribute attributes attached to Methods foo and goo within it.

:Class c1
:using System

:attribute SerializableAttribute
:attribute CLSCompliantAttribute 1

∇ foo(p1 p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute

∇

∇ goo(p1 p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute 'Don''t use this' 1

∇

:EndClass ⍝ c1

When this Class is exported as a .NET Class, the attributes are saved in its
metadata. For example, Visual Studio will warn developers if they make use of a
member which has the ObsoleteAttribute.

Chapter 3: Object Oriented Programming 185

:Access Statement
:Access <Private|Public><Instance|Shared><Overridable>

<Override>
:Access <WebMethod>

The :Access statement is used to specify characteristics for Classes, Properties and
Methods.

Element Description

Private|Public
Specifies whether or not the (nested) Class, Property or
Method is accessible from outside the Class or an
Instance of the Class. The default is Private.

Instance|Shared

For a Field, specifies if there is a separate value of the
Field in each Instance of the Class, or if there is only a
single value that is shared between all Instances. For a
Property or Method, specifies whether the code
associated with the Property or Method runs in the
Class or Instance.

WebMethod
Applies only to a Method and specifies that the
method is exported as a web method. This applies
only to a Class that implements a Web Service.

Overridable
Applies only to an Instance Method and specifies that
the Method may be overridden by a Method in a
higher Class. See below.

Override
Applies only to an Instance Method and specifies that
the Method overrides the corresponding Overridable
Method defined in the Base Class. See below.

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it from within the
Base Class.

Chapter 3: Object Oriented Programming 186

However, a Method declared as being Overridable is replaced in situ (i.e.
within its own Class) by a Method of the same name in a higher Class if that
Method is itself declared with the Override keyword. For further information,
see Superseding Base Class Methods on page 148.

Nested Classes

The :Access statement is also used to control the visibility of one Class that is
defined within another (a nested Class). A Nested Class may be either Private or
Public. Note that the :Access Statement must precede the definition of any
Class contents.

A Public Nested Class is visible from outside its containing Class and may be
used directly in its own right, whereas a Private Nested Class is not and may
only be used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

WebMethod

Note that :Access WebMethod is equivalent to:

:Access Public
:Attribute System.Web.Services.WebMethodAttribute

Chapter 3: Object Oriented Programming 187

:Implements Statement
The :Implements statement identifies the function to be one of the following
types.

:Implements Constructor <[:Base expr]>
:Implements Destructor
:Implements Method <InterfaceName.MethodName>
:Implements Trigger <name1><,name2,name3,...>
:Implements Trigger *

Element Description

Constructor Specifies that the function is a Class Constructor.

:Base expr
Specifies that the Base Constructor be called with the result
of the expression expr as its argument.

Destructor Specifies that the function is a Class Destructor.

Method
Specifies that the function implements the Method
MethodName whose syntax is specified by Interface
InterfaceName.

Trigger

Identifies the function as a Trigger Function which is
activated by changes to variable name1, name2, and so
forth.
Trigger * specifies a Global Trigger that is activated by the
assignment of any global variable in the same namespace.

Chapter 3: Object Oriented Programming 188

:Field Statement
:Field <Private|Public> <Instance|Shared> <ReadOnly>...

... FieldName <← expr>

A :Field statement is a single statement whose elements are as follows:

Element Description

Private|Public
Specifies whether or not the Field is accessible from
outside the Class or an Instance of the Class. The
default is Private.

Instance|Shared
Specifies if there is a separate value of the Field in
each Instance of the Class, or if there is only a single
value that is shared between all Instances.

ReadOnly
If specified, this keyword prevents the value in the
Field from being changed after initialisation.

Type
If specified, this identifies a .Net type for the Field.
This type applies only when the Class is exported as a
.NET Assembly.

FieldName Specifies the name of the Field (mandatory).

← expr Specifies an initial value for the Field.

Examples:

The following statement defines a Field called Name. It is (by default), an Instance
Field so every Instance of the Class has a separate value. It is a Public Field and so
may be accessed (set or retrieved) from outside an Instance.

:Field Public Name

The following statement defines a Field called Months.

:Field Shared ReadOnly Months←12↑(⎕NEW
DateTimeFormatInfo)

.AbbreviatedMonthNames

Months is a Shared Field so there is just a single value that is the same for every
Instance of the Class. It is (by default), a Private Field and may only be referenced
by code running in an Instance or in the Class itself. Furthermore, it is ReadOnly
and may not be altered after initialisation. Its initial value is calculated by an
expression that obtains the short month names that are appropriate for the current
locale using the .NET Type DateTimeFormatInfo.

Chapter 3: Object Oriented Programming 189

Notes
Note that Fields are initialised when a Class script is fixed by the editor or by
⎕FIX. If the evaluation of expr causes an error (for example, a VALUE ERROR),
an appropriate message will be displayed in the Status Window and ⎕FIX will fail
with a DOMAIN ERROR. Note that a ReadOnly Field may only be assigned a
value by its :Field statement.

In the second example above, the expression will only succeed if ⎕USING is set to
the appropriate path, in this case System.Globalization.

You may not define a Field with the name of one of the permissible keywords
(such as public). In such cases the Class will not fix and an error message will be
displayed in the Status Window. For example:

error AC0541: a field must have a name " :Field Public public"

Chapter 3: Object Oriented Programming 190

:Property Section
A Property is defined by a :Property ... :EndProperty section in a Class
Script. The syntax of the :Property Statement, and its optional :Access statement
is as follows:

:Property <Simple|Numbered|Keyed> <Default>
Name<,Name>...
:Access <Private|Public><Instance|Shared>
...
:EndProperty

Element Description

Name

Specifies the name of the Property by which
it is accessed. Additional Properties, sharing
the same PropertyGet and/or PropertySet
functions, and the same access behaviour may
be specified by a comma-separated list of
names.

Simple|Numbered|Keyed
Specifies the type of Property (see below).
The default is Simple.

Default
Specifies that this Property acts as the default
property for the Class when indexing is
applied directly to an Instance of the Class.

Private|Public

Specifies whether or not the Property is
accessible from outside the Class or an
Instance of the Class. The default is
Private.

Instance|Shared

Specifies if there is a separate value of the
Property in each Instance of the Class, or if
there is only a single value that is shared
between all Instances.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only
ever partially accessed and set (one element at a time) via indices.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

Chapter 3: Object Oriented Programming 191

Numbered and Keyed Properties are designed to allow APL to perform selections
and structural operations on the Property.

Within the body of a Property Section there may be:

l one or more :Access statements
l a single PropertyGet function.
l a single PropertySet function
l a single PropertyShape function

The three functions are identified by case-independent names Get, Set and
Shape.

Errors
When a Class is fixed by the Editor or by ⎕FIX, APL checks the validity of each
Property section and the syntax of PropertyGet, PropertySet and PropertyShape
functions within them.

l You may not specify a name which is the same as one of the keywords.
l There must be at least a PropertyGet, or a PropertySet or a PropertyShape
function defined.

l You may only define a PropertyShape function if the Property is Numbered.

If anything is wrong, the Class is not fixed and an error message is displayed in the
Status Window. For example:

error AC0545: invalid or empty property declaration
error AC0595: this property type should not implement a
"shape" function

PropertyArguments Class
Where appropriate, APL supplies the PropertyGet and PropertySet functions with
an argument that is an instance of the internal class PropertyArguments.

PropertyArguments has just 3 read-only Fields which are as follows:

Name
The name of the property. This is useful when one
function is handling several properties.

NewValue
Array containing the new value for the Property or
for selected element(s) of the property as specified
by Indexers.

IndexersSpecified
A Boolean vector that identifies which dimensions
of the Property are to be referenced or assigned.

Indexers
A vector that identifies the elements of the Property
that are to be referenced or assigned.

Chapter 3: Object Oriented Programming 192

PropertyGet Function R←Get {ipa}

The name of the PropertyGet function must be Get, but is case-independent. For
example, get, Get, gEt and GET are all valid names for the PropertyGet function.

The PropertyGet function must be result returning. For a Simple Property, it may be
monadic or niladic. For a Numbered or Keyed Property it must be monadic.

The result R may be any array. However, for a Keyed Property, R must conform to
the rank and shape specified by ipa.Indexers or be scalar.

If monadic, ipa is an instance of the internal class .

In all cases, ipa.Name contains the name of the Property being referenced and
NewValue is undefined (VALUE ERROR).

If the Property is Simple, ipa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same
length as the rank of the property (as implied by the result of the Shape function)
that identifies a single element of the Property whose value is to be obtained. In
this case, R must be scalar.

If the Property is Keyed, ipa.IndexersSpecified is a Boolean vector with
the same length as the rank of the property (as implied by the result of the Shape
function). A value of 1 means that an indexing array for the corresponding
dimension of the Property was specified, while a value of 0 means that the
corresponding dimension was elided. ipa.Indexers is a vector of the same
length containing the arrays that were specified within the square brackets in the
reference expression. Specifically, ipa.Indexers will contain one fewer
elements than, the number of semi-colon (;) separators. If any index was elided, the
corresponding element of ipa.Indexers is ⎕NULL.

Note:

It is not possible to predict the number of times that a PropertyGet, PropertySet or
PropertyShape function will be called by a particular APL expression, as this
depends upon how that expression is implemented internally. You should therefore
not rely on the number of times that a Get, Set or Shape function is called, and
none should have any side effects on any other APL object

Chapter 3: Object Oriented Programming 193

PropertySet Function Set ipa

The name of the PropertySet function must be Set, but is case-independent. For
example, set, Set, sEt and SET are all valid names for the PropertySet function.

The PropertySet function must be monadic and may not return a result.

ipa is an instance of the internal class .

In all cases, ipa.Name contains the name of the Property being referenced and
NewValue contains the new value(s) for the element(s) of the Property being
assigned.

If the Property is Simple, ipa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same
length as the rank of the property (as implied by the result of the Shape function)
that identifies a single element of the Property whose value is to be set.

If the Property is Keyed, ipa.IndexersSpecified is a Boolean vector with
the same length as the rank of the property (as implied by the result of the Shape
function). A value of 1 means that an indexing array for the corresponding
dimension of the Property was specified, while a value of 0 means that the
corresponding dimension was elided.ipa.Indexers is a vector containing the
arrays that were specified within the square brackets in the assignment expression.
Specifically, ipa.Indexers will contain one fewer elements than, the number of
semi-colon (;) separators. If any index was elided, the corresponding element of
ipa.Indexers is ⎕NULL. However, if the Keyed Property is being assigned in
its entirety, without square-bracket indexing, ipa.Indexers is undefined
(VALUE ERROR).

Note:

It is not possible to predict the number of times that a PropertyGet, PropertySet or
PropertyShape function will be called by a particular APL expression, as this
depends upon how that expression is implemented internally. You should therefore
not rely on the number of times that a Get, Set or Shape function is called, and
none should have any side effects on any other APL object

Chapter 3: Object Oriented Programming 194

PropertyShape Function R←Shape {ipa}

The name of the PropertyShape function must be Shape, but is case-independent.
For example, shape, Shape, sHape and SHAPE are all valid names for the
PropertyShape function.

A PropertyShape function is only called if the Property is a Numbered Property.

The PropertyShape function must be niladic or monadic and must return a result.

If monadic, ipa is an instance of the internal class . ipa.Name contains the name
of the Property being referenced and NewValue and Indexers are undefined
(VALUE ERROR).

The result R must be an integer vector or scalar that specifies the rank of the
Property. Each element of R specifies the length of the corresponding dimension of
the Property. Otherwise, the reference or assignment to the Property will fail with
DOMAIN ERROR.

Note that the result R is used by APL to check that the number of indices
corresponds to the rank of the Property and that the indices are within the bounds
of its dimensions. If not, the reference or assignment to the Property will fail with
RANK ERROR or LENGTH ERROR.

Note:

It is not possible to predict the number of times that a PropertyGet, PropertySet or
PropertyShape function will be called by a particular APL expression, as this
depends upon how that expression is implemented internally. You should therefore
not rely on the number of times that a Get, Set or Shape function is called, and
none should have any side effects on any other APL object

Chapter 4: Threads and Triggers 195

Chapter 4:

Threads and Triggers

Threads
Dyalog APL supports multithreading - the ability to run more than one APL
expression at the same time.

This unique capability allows you to perform background processing, such as
printing, database retrieval, database update, calculations, and so forth while at the
same time perform other interactive tasks.

Multithreading may be used to improve throughput and system responsiveness.

A thread is a strand of execution in the APL workspace.

A thread is created by calling a function asynchronously, using the primitive
operator ‘spawn’: & or by the asynchronous invocation of a callback function.

With a traditional APL synchronous function call, execution of the calling
environment is paused, pendent on the return of the called function. With an
asynchronous call, both calling environment and called function proceed to
execute concurrently.

An asynchronous function call is said to start a new thread of execution. Each
thread has a unique thread number, with which, for example, its presence can be
monitored or its execution terminated.

Any thread can spawn any number of sub-threads, subject only to workspace
availability. This implies a hierarchy in which a thread is said to be a child thread
of its parent thread. The base thread at the root of this hierarchy has thread
number 0.

With multithreading, APL’s stack or state indicator can be viewed as a branching
tree in which the path from the base to each leaf is a thread.

At any point in time, only one thread is actually running; the others are paused.
Each APL thread has its own state indicator, or SI stack. When APL switches from
one thread to another, it saves the current stack (with all its local variables and
function calls), restores the new one, and then continues processing.

Chapter 4: Threads and Triggers 196

When a parent thread terminates, any of its children which are still running,
become the children of (are ‘adopted’ by) the parent’s parent.

Thread numbers are allocated sequentially from 0 to 2147483647. At this point,
the sequence ‘wraps around’ and numbers are allocated from 0 again avoiding any
still in use. The sequence is reinitialised when a)RESET command is issued, or
the active workspace is cleared, or a new workspace is loaded. A workspace may
not be saved with threads other than the base thread: 0, running.

Multi-Threading language elements.
The following language elements are provided to support threads.

l Primitive operator, spawn: &.
l System functions: ⎕TID, ⎕TCNUMS, ⎕TNUMS, ⎕TKILL, ⎕TSYNC.
l An extension to the GUI Event syntax to allow asynchronous callbacks.
l A control structure: :Hold.
l System commands:)HOLDS,)TID.
l Extended)SI and)SINL display.

Running CallBack Functions as Threads
A callback function is associated with a particular event via the Event property of
the object concerned. A callback function is executed by ⎕DQ when the event
occurs, or by ⎕NQ.

If you append the character & to the name of the callback function in the Event
specification, the callback function will be executed asynchronously as a thread
when the event occurs. If not, it is executed synchronously as before.

For example, the event specification:

⎕WS'Event' 'Select' 'DoIt&'

tells ⎕DQ to execute the callback function DoIt asynchronously as a thread
when a Select event occurs on the object.

Chapter 4: Threads and Triggers 197

Thread Switching
Programming with threads requires care.

The interpreter may switch between running threads at the following points:

l Between any two lines of a defined function or operator
l On entry to a dfn or dop.
l While waiting for a ⎕DL to complete.
l While waiting for a ⎕FHOLD to complete.
l While awaiting input from:

o ⎕DQ
o ⎕SR
o ⎕ED

l The session prompt or ⎕: or ⍞.
l While awaiting the completion of an external operation:

o A call on an external (AP) function.
o A call on a ⎕NA (DLL) function
o A call on an OLE function.
o A call on a .NET function.

At any of these points, the interpreter might execute code in other threads. If such
threads change the global environment; for example by changing the value of, or
expunging a name; then the changes will appear to have happened while the
thread in question passes through the switch point. It is the task of the application
programmer to organise and contain such behaviour!

You can prevent threads from interacting in critical sections of code by using the
:Hold control structure.

High Priority Callback Functions

Note that the interpreter cannot perform thread-switching during the execution of a
high-priority callback. This is a callback function that is invoked by a high-
priority event which demands that the interpreter must return a result to Windows
before it may process any other event. Such high-priority events include Configure,
ExitWindows, DateTimeChange, DockStart, DockCancel, DropDown. It is
therefore not permitted to use a :Hold control structure in a high-priority callback
function.

Chapter 4: Threads and Triggers 198

Name Scope
APL's name scope rules apply whether a function call is synchronous or
asynchronous. For example when a defined function is called, names in the calling
environment are visible, unless explicitly shadowed in the function header.

Just as with a synchronous call, a function called asynchronously has its own local
environment, but can communicate with its parent and "sibling" functions via local
names in the parent.

This point is important. It means that siblings can run in parallel without danger of
local name clashes. For example, a GUI application can accommodate multiple
concurrent instances of its callback functions.

However, with an asynchronous call, as the calling function continues to execute,
both child and parent functions may modify values in the calling environment.
Both functions see such changes immediately they occur.

If a parent function terminates while any of its children are still running, those
children will no longer have access to its local names, and references to such
names will either generate VALUE ERROR or be replaced by values from the
environment that called the parent function. If a child function references variables
defined by its parent or relies in any other way on its parent's environment (such as
a local value of ⎕IO), the parent function should therefore execute a ⎕TSYNC in
order to wait for its children to complete before itself exiting.

If, on the other hand, after launching an asynchronous child, the parent function
calls a new function (either synchronously or asynchronously); names in the new
function are beyond the purview of the original child. In other words, a function
can only ever see its calling stack decrease in size – never increase. This is in order
that the parent may call new defined functions without affecting the environment
of its asynchronous children.

Stack Considerations
When you start a thread, it begins with the SI stack of the calling function and
sees all of the local variables defined in all the functions down the stack. However,
unless the calling function specifically waits for the new thread to terminate (see
Language Reference Guide: Wait for Threads to Terminate), the calling functions
will (bit by bit, in their turn) continue to execute. The new thread's view of its
calling environment may then change. Consider the following example:

Chapter 4: Threads and Triggers 199

Suppose that you had the following functions: RUN[3] calls INIT which in turn
calls GETDATA but as 3 separate threads with 3 different arguments:

∇ RUN;A;B
[1] A←1
[2] B←'Hello World'
[3] INIT
[4] CALC
[5] REPORT

∇

∇ INIT;C;D
[1] C←D←0
[2] GETDATA&'Sales'
[3] GETDATA&'Costs'
[4] GETDATA&'Expenses'

∇

When each GETDATA thread starts, it immediately sees (via ⎕SI) that it was called
by INIT which was in turn called by RUN, and it sees local variables A, B, C and
D. However, once INIT[4] has been executed, INIT terminates, and execution of
the root thread continues by calling CALC. From then on, each GETDATA thread
no longer sees INIT (it thinks that it was called directly from RUN) nor can it see
the local variables C and D that INIT had defined. However, it does continue to
see the locals A and B defined by RUN, until RUN itself terminates.

Note that if CALC were also to define locals A and B, the GETDATA threads would
still see the values defined by RUN and not those defined by CALC. However, if
CALC were to modify A and B (as globals) without localising them, the GETDATA
threads would see the modified values of these variables, whatever they happened
to be at the time.

Globals and the Order of Execution
It is important to recognise that any reference or assignment to a global or semi-
global object (including GUI objects) is inherently dangerous (i.e. a source of
programming error) if more than one thread is running. Worse still, programming
errors of this sort may not become apparent during testing because they are
dependent upon random timing differences. Consider the following example:

Chapter 4: Threads and Triggers 200

∇ BUG;SEMI_GLOBAL
[1] SEMI_GLOBAL←0
[2] FOO& 1
[3] GOO& 1

∇

∇ FOO
[1] :If SEMI_GLOBAL=0
[2] DO_SOMETHING SEMI_GLOBAL
[3] :Else
[4] DO_SOMETHING_ELSE SEMI_GLOBAL
[5] :EndIf

∇

∇ GOO
[1] SEMI_GLOBAL←1

∇

In this example, it is formally impossible to predict in which order APL will
execute statements in BUG, FOO or GOO from BUG[2] onwards. For example, the
actual sequence of execution may be:

BUG[1] → BUG[2] → FOO[1] → FOO[2] →
DO_SOMETHING[1]

or

BUG[1] → BUG[2] → BUG[3] → GOO[1] →
FOO[1] → FOO[2] → FOO[3] →
FOO[4] → DO_SOMETHING_ELSE[1]

This is because APL may switch from one thread to another between any two lines
in a defined function. In practice, because APL gives each thread a significant
time-slice, it is likely to execute many lines, maybe even hundreds of lines, in one
thread before switching to another. However, you must not rely on this; thread-
switching may occur at any time between lines in a defined function.

Secondly, consider the possibility that APL switches from the FOO thread to the
GOO thread after FOO[1]. If this happens, the value of SEMI_GLOBAL passed to
DO_SOMETHING will be 1 and not 0. Here is another source of error.

In fact, in this case, there are two ways to resolve the problem. To ensure that the
value of SEMI_GLOBAL remains the same from FOO[1] to FOO[2], you may use
diamonds instead of separate statements, e.g.

:If SEMI_GLOBAL=0 ⋄ DO_SOMETHING SEMI_GLOBAL

Chapter 4: Threads and Triggers 201

Even better, although less efficient, you may use :Hold to synchronise access to
the variable, for example:

∇ FOO
[1] :Hold 'SEMI_GLOBAL'
[2] :If SEMI_GLOBAL=0
[3] DO_SOMETHING SEMI_GLOBAL
[4] :Else
[5] DO_SOMETHING_ELSE SEMI_GLOBAL
[6] :EndIf
[7] :EndHold

∇

∇ GOO
[1] :Hold 'SEMI_GLOBAL'
[2] SEMI_GLOBAL←1
[3] :EndHold

∇

Now, although you still cannot be sure which of FOO and GOO will run first, you
can be sure that SEMI_GLOBAL will not change (because GOO cuts in) within
FOO.

Note that the string used as the argument to :Hold is completely arbitrary, so
long as threads competing for the same resource use the same string.

A Caution
These types of problems are inherent in all multithreading programming languages,
and not just with Dyalog APL. If you want to take advantage of the additional
power provided by multithreading, it is advisable to think carefully about the
potential interaction between different threads.

Chapter 4: Threads and Triggers 202

Threads & Niladic Functions
In common with other operators, the spawn operator & may accept monadic or
dyadic functions as operands, but not niladic functions. This means that, using
spawn, you cannot start a thread that consists only of a niladic function

If you wish to invoke a niladic function asynchronously, you have the following
choices:

l Turn your niladic function into a monadic function by giving it a dummy
argument which it ignores.

l Call your niladic function with a dfn to which you give an argument that is
implicitly ignored. For example, if the function NIL is niladic, you can call
it asynchronously using the expression: {NIL}& 0

l Call your function via a dummy monadic function, e.g.

∇ NIL_M DUMMY
[1] NIL

∇
NIL_M& ''

l Use execute, e.g.

⍎& 'NIL'

Note that niladic functions can be invoked asynchronously as callback functions.
For example, the statement:

⎕WS'Event' 'Select' 'NIL&'

will execute correctly as a thread, even though NIL is niladic. This is because
callback functions are invoked directly by ⎕DQ rather than as an operand to the
spawn operator.

Chapter 4: Threads and Triggers 203

Threads & External Functions
External functions in dynamic link libraries (DLLs) defined using the ⎕NA
interface may be run in separate C threads. Such threads:

l take advantage of multiple processors if the operating system permits.
l allow APL to continue processing in parallel during the execution of a
⎕NA function.

When you define an external function using ⎕NA, you may specify that the
function be run in a separate C thread by appending an ampersand (&) to the
function name, for example:

'beep'⎕NA'user32|MessageBeep& i'
⍝ MessageBeep will run in a separate C thread

When APL first comes to execute a multi-threaded ⎕NA function, it starts a new C-
thread, executes the function within it, and waits for the result. Other APL threads
may then run in parallel.

Note that when the ⎕NA call finishes and returns its result, its new C-thread is
retained to be re-used by any subsequent multithreaded ⎕NA calls made within the
same APL thread. Thus any APL thread that makes any multi-threaded ⎕NA calls
maintains a separate C-thread for their execution. This C-thread is discarded when
its APL thread finishes.

Note that there is no point in specifying a ⎕NA call to be multi-threaded, unless
you wish to execute other APL threads at the same time.

In addition, if your ⎕NA call needs to access an APL GUI object (strictly, a
window or other handle) it should normally run within the same C-thread as APL
itself, and not in a separate C-thread. This is because Windows associates objects
with the C-thread that created them. Although you can use a multi-threaded ⎕NA
call to access (say) a Dyalog APL Form via its window handle, the effects may be
different than if the ⎕NA call was not multi-threaded. In general, ⎕NA calls that
access APL (GUI) objects should not be multi-threaded.

If you wish to run the same ⎕NA call in separate APL threads at the same time, you
must ensure that the DLL is thread-safe. Functions in DLLs which are not thread-
safe, must be prevented from running concurrently by using the :Hold control
structure. Note that all the standard Windows API DLLs are thread safe.

Notice that you may define two separate functions (with different names), one
single-threaded and one multi-threaded, associated with the same function in the
DLL. This allows you to call it in either way.

Chapter 4: Threads and Triggers 204

Synchronising Threads
Threads may be synchronised using tokens and a token pool.

An application can synchronise its threads by having one thread add tokens into
the pool whilst other threads wait for tokens to become available and retrieve them
from the pool.

Tokens possess two separate attributes, a type and a value.

The type of a token is a positive or negative integer scalar. The value of a token is
any arbitrary array that you might wish to associate with it.

The token pool may contain up to 2*31 tokens; they do not have to be unique
neither in terms of their types nor of their values.

The following system functions are used to manage the token pool:

⎕TPUT Puts tokens into the pool.

⎕TGET
If necessary waits for, and then retrieves some tokens from the
pool.

⎕TPOOL Reports the types of tokens in the pool

⎕TREQ Reports the token requests from specific threads

A simple example of a thread synchronisation requirement occurs when you want
one thread to reach a certain point in processing before a second thread can
continue. Perhaps the first thread performs a calculation, and the second thread
must wait until the result is available before it can be used.

This can be achieved by having the first thread put a specific type of token into
the pool using ⎕TPUT. The second thread waits (if necessary) for the new value to
be available by calling ⎕TGET with the same token type.

Notice that when ⎕TGET returns, the specified tokens are removed from the pool.
However, negative token types will satisfy an infinite number of requests for their
positive equivalents.

The system is designed to cater for more complex forms of synchronisation. For
example, a semaphore to control a number of resources can be implemented by
keeping that number of tokens in the pool. Each thread will take a token while
processing, and return it to the pool when it has finished.

Chapter 4: Threads and Triggers 205

A second complex example is that of a latch which holds back a number of
threads until the coast is clear. At a signal from another thread, the latch is opened
so that all of the threads are released. The latch may (or may not) then be closed
again to hold up subsequently arriving threads. A practical example of a latch is a
ferry terminal.

Semaphore Example
A semaphore to control a number of resources can be implemented by keeping that
number of tokens in the pool. Each thread will take a token while processing, and
return it to the pool when it has finished.

For example, if we want to restrict the number of threads that can have sockets
open at any one time.

sock←99 ⍝ socket-token
any +ive number will do).

⎕TPUT 5/sock ⍝ add 5 socket-tokens to
pool.

∇ sock_open ...
[1] :If sock=⎕TGET sock ⍝ grab a socket token
[.] ... ⍝ do stuff.
[.] ⎕TPUT sock ⍝ release socket token
[.] :Else
[.] error'sockets off' ⍝ sockets switched off by

retract (see below).
[.] :EndIf

∇

0 ⎕TPUT ⎕treq ⎕tnums ⍝ retract socket "service"
with 0 value.

Latch Example
A latch holds back a number of threads until the coast is clear. At a signal from
another thread, the latch is opened so that all of the threads are released. The latch
may (or may not) then be closed again to hold up subsequently arriving threads.

A visual example of a latch might be a ferry terminal, where cars accumulate in the
queue until the ferry arrives. The barrier is then opened and all (up to a maximum
number) of the cars are allowed through it and on to the ferry. When the last car is
through, the barrier is re-closed.

Chapter 4: Threads and Triggers 206

tkt←6 ⍝ 6-token: ferry
ticket.

∇ car ...
[1] ⎕TGET tkt ⍝ await ferry.
[2] ...

∇ ferry ...
[1] arrives in port
[2] ⎕TPUT(↑,/⎕treq ⎕tnums)∩tkt ⍝ ferry tickets for
all.
[3] ...

Note that it is easy to modify this example to provide a maximum number of ferry
places per trip by inserting max_places↑ between ⎕TPUT and its argument. If
fewer cars than the ferry capacity are waiting, the ↑ will fill with trailing 0s. This
will not cause problems because zero tokens are ignored.

Let us replace the car ferry with a new road bridge. Once the bridge is ready for
traffic, the barrier could be opened permanently by putting a negative ticket in the
pool.

⎕TPUT -tkt ⍝ open ferry barrier permanently.

Cars could choose to take the last ferry if there are places:

∇ car ...
[1] :Select ⎕TGET tkt
[2] :Case tkt ⋄ take the last ferry.
[3] :Case -tkt ⋄ ferry full: take the new bridge.
[4] :End

The above :Select works because by default, ⎕TPUT -tkt puts a value of -
tkt into the token.

Debugging Threads
If a thread sustains an untrapped error, its execution is suspended in the normal
way. If the Pause on Error option is set, all other threads are paused. If Pause on
Error option is not set, other threads will continue running and it is possible for
another thread to encounter an error and suspend (see the Dyalog for Microsoft
Windows Installation and Configuration Guide).

Using the facilities provided by the Tracer and the Threads Tool (see the Dyalog
for Microsoft Windows UI Guide) it is possible to interrupt (suspend) and restart
individual threads, and to pause and resume individual threads, so any thread may
be in one of three states - running, suspended or paused.

Chapter 4: Threads and Triggers 207

The Tracer and the Session may be connected with any suspended thread and you
can switch the attention of the Session and the Tracer between suspended threads
using)TID or by clicking on the appropriate tab in the Tracer. At this point, you
may:

l Examine and modify local variables for the currently suspended thread.
l Trace and edit functions in the current thread.
l Cut back the stack in the currently suspended thread.
l Restart execution.
l Start new threads

The error message from a thread other than the base is prefixed with its thread
number:

260:DOMAIN ERROR
Div[2] rslt←num÷div

^

State indicator displays:)SI and)SINL have been extended to show threads'
tree-like calling structure.

)SI
· #.Calc[1]
&5
· · #.DivSub[1]
· &7
· · #.DivSub[1]
· &6
· #.Div[2]*
&4
#.Sub[3]
#.Main[4]

Here, Main has called Sub, which has spawned threads 4 and 5 with functions:
Div and Calc. Function Div, after spawning DivSub in each of threads 6 and 7,
have been suspended at line [2].

Removing stack frames using Quit from the Tracer or → from the session affects
only the current thread. When the final stack frame in a thread (other than the base
thread) is removed, the thread is expunged.

)RESET removes all but the base thread.

Note the distinction between a suspended thread and a paused thread.

A suspended thread is stopped at the beginning of a line in a defined function or
operator. It may be connected to the Session so that expressions executed in the
Session do so in the context of that thread. It may be restarted by executing
→line (typically, →⎕LC).

Chapter 4: Threads and Triggers 208

A paused thread is an inactive thread that is currently being ignored by the thread
scheduler. A paused thread may be paused within a call to ⎕DQ, a call on an
external function, at the beginning of a line, or indeed at any of the thread-
switching points described earlier in this chapter.

A paused thread may be resumed only by the action of a menu item or button. A
paused thread resumes only in the sense that it ceases to be ignored by the thread
scheduler and will therefore be switched back to at some point in the future. It
does not actually continue executing until the switch occurs.

Triggers
Triggers provide the ability to have a function called automatically whenever a
variable or a Field is assigned. Triggers are actioned by all forms of assignment (←),
but only by assignment.

Triggers are designed to allow a class to perform some action when a field is
modified – without having to turn the field into a property and use the property
setter function to achieve this. Avoiding the use of a property allows the full use
of the APL language to manipulate data in a field, without having to copy field
data in and out of the class through get and set functions.

Triggers can also be applied to variables outside a class, and there will be
situations where this is very useful. However, dynamically attaching and detaching
a trigger from a variable is a little tricky at present.

The function that is called when a variable or Field changes is referred to as the
Trigger Function. The name of a variable or Field which has an associated Trigger
Function is termed a Trigger.

A function is declared as a Trigger function by including the statement:

:Implements Trigger Name1,Name2,Name3, ...

where Name1, Name2 etc. are the Triggers.

When a Trigger function is invoked, it is passed an Instance of the internal Class
TriggerArguments. This Class has 3 Fields:

Member Description

Name
Name of the Trigger whose change in value has caused the
Trigger Function to be invoked.

NewValue The newly assigned value of the Trigger

OldValue
The previous value of the Trigger. If the Trigger was not
previously defined, a reference to this Field causes a VALUE
ERROR.

Chapter 4: Threads and Triggers 209

A Trigger Function is called as soon as possible after the value of a Trigger was
assigned; typically by the end of the currently executing line of APL code. The
precise timing is not guaranteed and may not be consistent because internal
workspace management operations can occur at any time.

If the value of a Trigger is changed more than once by a line of code, the Trigger
Function will be called at least once, but the number of times is not guaranteed.

A Trigger Function is not called when the Trigger is expunged.

Expunging a Trigger disconnects the name from the Trigger Function and the
Trigger Function will not be invoked when the Trigger is reassigned. The
connection may be re-established by re-fixing the Trigger Function.

A Trigger may have only a single Trigger Function. If the Trigger is named in
more than one Trigger Function, the Trigger Function that was last fixed will
apply.

In general, it is inadvisable for a Trigger function to modify its own Trigger, as this
will potentially cause the Trigger to be invoked repeatedly and forever.

To associate a Trigger function with a local name, it is necessary to dynamically
fix the Trigger function in the function in which the Trigger is localised; for
example:

∇ TRIG arg
[1] :Implements Trigger A
[2] ...

∇ TEST;A
[1] ⎕FX ⎕OR'TRIG'
[2] A←10

Example

The following function displays information when the value of variables A or B
changes.

∇ TRIG arg
[1] :Implements Trigger A,B
[2] arg.Name'is now 'arg.NewValue
[3] :Trap 6 ⍝ VALUE ERROR
[4] arg.Name'was 'arg.OldValue
[5] :Else
[6] arg.Name' was [undefined]'
[7] :EndTrap

∇

Chapter 4: Threads and Triggers 210

Note that on the very first assignment to A, when the variable was previously
undefined, arg.OldValue is a VALUE ERROR.

A←10
A is now 10
A was [undefined]

A+←10
A is now 20
A was 10

A←'Hello World'
A is now Hello World
A was 20

A[1]←⊂2 3⍴⍳6
A is now 1 2 3 ello World

4 5 6
A was Hello World

B←⌽¨A
B is now 3 2 1 ello World

6 5 4
B was [undefined]

A←⎕NEW MyClass
A is now #.[Instance of MyClass]
A was 1 2 3 ello World

4 5 6

'F'⎕WC'Form'
A←F

A is now #.F
A was #.[Instance of MyClass]

Note that Trigger functions are actioned only by assignment, so changing A to a
Form using ⎕WC does not invoke TRIG.

'A'⎕WC'FORM' ⍝ Note that Trigger Function is not
invoked

However, the connection (between A and TRIG) remains and the Trigger Function
will be invoked if and when the Trigger is re-assigned.

A←99
A is now 99
A was #.A

See Trigger Fields on page 144 for information on how a Field (in a Class) may be
used as a Trigger.

Chapter 4: Threads and Triggers 211

Global Triggers
A global Trigger is a function that triggers on any assignment to a global variable
in the same namespace. Global Triggers may be disabled and re-enabled using
2007⌶. See Language Reference Guide: Disable Global Triggers.

This is implemented by the function declaration statement:

:Implements Trigger *

The argument to the trigger function is an instance of the internal class
TriggerArguments which contains the following members:

Member Description

Name
The name of the global variable that is about to be
changed.

Indexers

If the assignment is some form of indexed assignment,
Indexers is an array with the same shape as the sub-
array that was assigned and contains the ravel-order,
⎕IO-sensitive, indices of the changed elements.
Otherwise, Indexers is undefined.

Example:

∇ foo args
[1] :Implements Trigger *
[2] args.Name'has changed'
[3] :If 2=args.⎕NC'Indexers'
[4] '⍴Indexers'(⍴args.Indexers)
[5] 'Indexers'(,args.Indexers)
[6] :EndIf

∇

vec←⍳5
vec has changed

a b←10 'Pete'
a has changed
b has changed

vec[2 4]←99
vec has changed
⍴Indexers 2
Indexers 2 4

array←2 3 4⍴⍳12
array has changed

Chapter 4: Threads and Triggers 212

(2 1 3↑array)←42
array has changed
⍴Indexers 2 1 3
Indexers 1 2 3 13 14 15

Notes

l like other Triggers, only the most recently fixed global trigger function will
apply and be called on assignment to a global variable.

l global triggers do not apply to local names nor to semi-globals (names
which are localised further up the stack).

l an assignment to a global variable will fire both its specific trigger (if
defined) and the global trigger. However, the order of execution is
undefined.

l do not use an argument name for your trigger function that may conflict
with a global variable name in the namespace.

Further Example

A potential use for a global trigger is to detect the unintended creation of global
variables due to localisation omissions. Note however that the timing of the
activation of the Trigger is unpredictable. In this example, the trigger for the
assignment to b activates after function hoo has exited. When Threads are
involved, timing becomes even less predictable.

∇ CatchGlobals arg
[1] ⍝ Displays a warning when a global is assigned
[2] :Implements Trigger *
[3] '*** assignment to global variable: ',

arg.Name,' from ',1↓⎕SI
∇
∇ foo

[1] goo
∇
∇ goo

[1] hoo
∇
∇ hoo

[1] a←10
[2] b←a

∇
foo

*** assignment to global variable: a from hoo goo foo
*** assignment to global variable: b from goo foo

Chapter 5: APL Files 213

Chapter 5:

APL Files

Introduction
Most languages store programs and data separately. APL is unusual in that it
allows you to store programs and data together in a workspace.

This can be inefficient if your dataset gets very large; when your workspace is
loaded, you are loading ALL of your data, whether you need it or not.

It also makes it difficult for other users to access your data, particularly if you want
them to be able to update it.

In these circumstances, you must extract your data from your workspace, and write
it to a file on disk, thus separating your data from your program. There are many
different kinds of file format. This section is concerned with the APL Component
File system which preserves the idea that your data consists of APL objects; hence
you can only access this type of file from within APL

The Component File system has a set of system functions through which you
access the file. Although this means that you have to learn a whole new set of
functions in order to use files, you will find that they provide you with a very
powerful mechanism to control access to your data.

Chapter 5: APL Files 214

Component Files
Overview
A component file is a data file maintained by Dyalog APL. It contains a series of
APL arrays known as components which are accessed by reference to their relative
position or component number within the file. Component files are just like other
data files and there are no special restrictions imposed on names or sizes.

A set of system functions is supplied to perform a range of file operations. These
provide facilities to create or delete files, and to read and write components.
Facilities are also provided for multi-user access, including the capability to
determine who may do what, and file locking for concurrent updates.

Tying and Untying Files
To access an existing component file it must be tied, i.e. opened for use. The tie
may be exclusive (single-user access) or shared (multi-user access). A file is untied,
i.e. closed, using ⎕FUNTIE or on terminating Dyalog APL. File ties survive
)LOAD, ⎕LOAD and)CLEAR operations.

Tie Numbers
A file is tied by associating a file name with a tie number. Tie numbers are
integers in the range 1 - 2147483647 and, you can supply one explicitly, or have
the interpreter allocate the next available one by specifying 0. The system
functions which tie files return the tie number as a "shy" result.

Creating and Removing Files
A component file is created using ⎕FCREATE which automatically ties the file for
exclusive use. A newly created file is empty, i.e. contains 0 components. A file is
removed with ⎕FERASE, although it must be exclusively tied to do so.

Adding and Removing Components
Components are added to a file using ⎕FAPPEND and removed using ⎕FDROP.
Component numbers are allocated consecutively starting at 1. Thus a new
component added by ⎕FAPPEND is given a component number which is one
greater than that of the last component in the file. Components may be removed
from the beginning or end of the file, but not from the middle. Component
numbers are therefore contiguous.

Chapter 5: APL Files 215

Reading and Writing Components
Components are read using ⎕FREAD and overwritten using ⎕FREPLACE. There are
no restrictions on the size or type of array which may replace an existing
component. Components are accessed by component number.

Component Information
In addition to the data held in a component, the user ID that wrote it and the time
at which it was written is also recorded.

Multi-User Access
⎕FSTIE ties a file for shared (i.e. multi-user) access. This kind of access would be
appropriate for a multi-user UNIX system, a network of single user PCs, or multiple
APL tasks under Microsoft Windows.

⎕FHOLD provides the means for the user to temporarily prevent other co-operating
users from accessing one or more files. This is necessary to allow a single logical
update involving more than one component, and perhaps more than one file, to be
completed without interference from another user. ⎕FHOLD is applicable to
External Variables as well as Component Files

File Access Control
There are two levels of file access control. As a regular file, the operating system
read/write controls for owner and other users apply. In addition, Dyalog manages
its own access controls using the access matrix. This is an integer matrix with 3
columns and any number of rows. Column 1 contains user numbers, column 2 an
encoding of permitted file operations, and column 3 passnumbers. Each row
specifies which file operations may be performed by which user(s) with which
passnumber. A value of 0 in column 1 specifies all users. A value of ¯1 in column
2 specifies all file operations. A value of 0 in column 3 specifies no passnumber. If
any row of the access matrix contains (0 ¯1 0) it specifies that all users may
perform all file operations with no passnumber.

User Number

Under Windows, this is a number which is defined by the aplnid parameter. If you
intend to use Dyalog's access matrix to control file access in a multi-user
environment, it is desirable to allocate to each user, a distinct user number.
However, if you intend to rely on underlying operating system controls, allocating
a user number of 0 (the default installation value) to everyone is more appropriate.
Under non-Windows platforms the User Number is set to be the effective user-id of
the APL process and cannot be altered. In both cases, a user number of 0 causes
APL to circumvent the access matrix mechanism described below.

Chapter 5: APL Files 216

Permission Code

This is an integer representation of a Boolean mask. Each bit in the mask indicates
whether or not a particular file operation is permitted as follows:

┌──┬──┬──┬──┬──┬──┬─┬─┬─┬─┬─┬─┬─┬─┬─┐ Bit No.
│15│14│13│12│11│10│9│8│7│6│5│4│3│2│1│
└──┴──┴──┴──┴──┴──┴─┴─┴─┴─┴─┴─┴─┴─┴─┘ File Access

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Operation Code
│ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ └── ⎕FREAD 1
│ │ │ │ │ │ │ │ │ │ │ └──── ⎕FTIE 2
│ │ │ │ │ │ │ │ │ │ └────── ⎕FERASE 4
│ │ │ │ │ │ │ │ │ └──────── ⎕FAPPEND 8
│ │ │ │ │ │ │ │ └────────── ⎕FREPLACE 16
│ │ │ │ │ │ │ └──────────── ⎕FDROP 32
│ │ │ │ │ │ │
│ │ │ │ │ │ └──────────────── ⎕FRENAME 128
│ │ │ │ │ │
│ │ │ │ │ └──────────────────── ⎕FRDCI 512
│ │ │ │ └─────────────────────── ⎕FRESIZE 1024
│ │ │ └────────────────────────── ⎕FHOLD 2048
│ │ └───────────────────────────── ⎕FRDAC 4096
│ └──────────────────────────────── ⎕FSTAC 8192
└─────────────────────────────────── ⎕FHIST 16384

For example, if bits 1, 4 and 6 are set and all other relevant bits are zero only
⎕FREAD, ⎕FAPPEND and ⎕FDROP are permitted. A convenient way to set up the
mask is to sum the access codes associated with each operation.

For example, the value 41 (1+8+32) authorises ⎕FREAD, ⎕FAPPEND and ⎕FDROP.
A value of ¯1 (all bits set) permits all operations. Thus by subtracting the access
codes of operations to be forbidden, it is possible to permit all but certain types of
access. For example, a value of ¯133 (¯1- 4+128) permits all operations except
⎕FERASE and ⎕FRENAME. Note that the value of unused bits is ignored. Any
non-zero permission code allows ⎕FSTIE and ⎕FSIZE. ⎕FCREATE, ⎕FUNTIE,
⎕FLIB, ⎕FNAMES and ⎕FNUMS are not subject to access control. Passnumbers
may also be used to establish different levels of access for the same user.

When the user attempts to tie a file using ⎕FTIE or ⎕FSTIE a row of the access
matrix is selected to control this and subsequent operations.

If the user is the owner, and the owner's user ID does not appear in the access
matrix, the value (⎕AI[1] ¯1 0) is conceptually appended to the access matrix.
This ensures that the owner has full access rights unless they are explicitly
restricted.

The chosen row is the first row in which the value in column 1 of the access
matrix matches the user ID and the value in column 3 matches the supplied
passnumber which is taken to be zero if omitted.

Chapter 5: APL Files 217

If there is no match of user ID and passnumber in the access matrix (including
implicitly added rows) then no access is granted and the tie fails with a FILE
ACCESS ERROR.

Once the applicable row of the access matrix is selected, it is used to verify all
subsequent file operations. The passnumber used to tie the file MUST be used for
every subsequent operation. Secondly, the appropriate bit in the permission code
corresponding to the file operation in question must be set. If either of these
conditions is broken, the operation will fail with FILE ACCESS ERROR.

If the access matrix is changed while a user has the file tied, the change takes
immediate effect. When the user next attempts to access the file, the applicable row
in the access matrix will be reselected subject to the supplied passnumber being
the same as that used to tie the file. If access with that password is rescinded the
operation will fail with FILE ACCESS ERROR.

When a file is created using ⎕FCREATE, the access matrix is empty. At this stage,
the owner has full access with passnumber 0, but no access with a non-zero
passnumber. Other users have no access permissions. Thus only the owner may
initialise the access matrix.

User 0
If a user has an aplnid of 0, the access matrix and supplied passnumbers are
ignored. This user is granted full and unrestricted access rights to all component
files, subject only to underlying operating system restrictions.

General File Operations
⎕FLIB gives a list of component files in a given directory. ⎕FNAMES and
⎕FNUMS give a list of the names and tie numbers of tied files. These general
operations which apply to more than one file are not subject to access controls.

Component File System Functions
See Language Reference for full details of the syntax of these system functions.

General

⎕FAVAIL Report file system availability

File Operations

⎕FCREATE Create a file

⎕FTIE Tie an existing file (exclusive)

⎕FSTIE Tie an existing file (shared)

Chapter 5: APL Files 218

⎕FUNTIE Untie file(s)

⎕FCOPY Copy a file

⎕FERASE Erase a file

⎕FRENAME Rename a file

File information

⎕FHIST Report file events

⎕FNUMS Report tie numbers of tied files

⎕FNAMES Report names of tied files

⎕FLIB Report names of component files

⎕FPROPS Report file properties

⎕FSIZE Report size of file

Writing to the file

⎕FAPPEND Append a component to the file

⎕FREPLACE Replace an existing component

Reading from a file

⎕FREAD Read one or more components

⎕FRDCI Read component information

Manipulating a file

⎕FDROP Drop a block of components

⎕FRESIZE Change file size (forces a compaction)

⎕FCHK Check and repair a file

Access manipulation

⎕FSTAC Set file access matrix

⎕FRDAC Read file access matrix

Control multi-user access

⎕FHOLD Hold file(s) - see later section for details

Chapter 5: APL Files 219

Using the Component File System
Let us suppose that you have written an APL system that builds a personnel
database, containing the name, age and place of birth of each employee. Let us
assume that you have created a variable DATA, which is a nested vector with each
element containing a person's name, age and place of birth:

DISPLAY 2↑DATA
.→---.
| .→----------------------. .→-------------------------. |
	.→-------. .→----.		.→------. .→--------.									
		Jonathan	42	Wales				Pauline	21	Isleworth		
	'--------' '-----'		'-------' '---------'									
'∊----------------------' '∊-------------------------'												
'∊---'

Then the following APL expressions can be used to access the database:

Example 1:

Show record 2

DISPLAY 2⊃DATA
.→-------------------------.
| .→------. .→--------. |
| |Pauline| 21 |Isleworth| |
| '-------' '---------' |
'∊-------------------------'

Example 2:

How many people in the database?

⍴DATA
123

Example 3:

Update Pauline's age

(2 2⊃DATA)←16

Chapter 5: APL Files 220

Example 4:
Add a new record to the database

DATA ,← ⊂'Maurice' 18 'London'

Now let's build a component file to hold our personnel database.

Create a new file, giving the file name, and the number you wish to use to identify
it (the file tie number):

'COMPFILE' ⎕FCREATE 1

If the file already exists, or you have already used this tie number, then APL will
respond with the appropriate error message.

Now write the data to the file. We could write a function that loops to do this, but
it is neater to take advantage of the fact that our data is a nested vector, and use
each (¨).

DATA ⎕FAPPEND¨ 1

Now we'll try our previous examples using this file.

Example 1:

Show record 2

DISPLAY ⎕FREAD 1 2
.→-------------------------.
| .→------. .→--------. |
| |Pauline| 21 |Isleworth| |
| '-------' '---------' |
'∊-------------------------'

Example 2:

How many people in our database?

⎕FSIZE 1 ⍝ First component, next
1 125 10324 4294967295 ⍝ component, file size,

⍝ maximum file size

¯1+2⊃⎕FSIZE 1 ⍝ Number of data items

The fourth element of ⎕FSIZE indicates the file size limit. Dyalog APL does not
impose a file size limit, although your operating system may do so, but the concept
is retained in order to make this version of Component Files compatible with
others.

Chapter 5: APL Files 221

Example 3:

Update Pauline's age

REC ← ⎕FREAD 1 2 ⍝ Read second component
REC[2] ← 18 ⍝ Change age
REC ⎕FREPLACE 1 2 ⍝ And replace component

Example 4:

Add a new record

('Janet' 25 'Basingstoke') ⎕FAPPEND 1

Example 5:

Rename our file

 'PERSONNEL' ⎕FRENAME 1

Example 6:

Tie an existing file; give file name and have the interpreter allocate the next
available tie number.

 'SALARIES' ⎕FTIE 0
2

Example 7:

Give everyone access to the PERSONNEL file

(1 3⍴0 ¯1 0)⎕FSTAC 1

Example 8:

Set different permissions on SALARIES.

AM ← 1 3⍴1 ¯1 0 ⍝ Owner ID 1 has full access
AM⍪← 102 1 0 ⍝ User ID 102 has READ only
AM⍪← 210 2073 0 ⍝ User ID 210 has

⍝ READ+APPEND+REPLACE+HOLD

AM ⎕FSTAC 2 ⍝ Store access matrix

Example 9:

Report on file names and associated numbers

⎕FNAMES,⎕FNUMS
PERSONNEL 1
SALARIES 2

Chapter 5: APL Files 222

Example 10:

Untie all files

⎕FUNTIE ⎕FNUMS

Programming Techniques
Controlling Multi-User Access
Obviously, Dyalog APL contains mechanisms that prevent data getting mixed up
if two users update a file at the same time. However, it is the programmer's
responsibility to control the logic of multi-user updates.

For example, suppose two people are updating our database at the same time. The
first checks to see if there is an entry for 'Geoff', sees that there isn't so adds a
new record. Meanwhile, the second user is checking for the same thing, and so also
adds a record for 'Geoff'. Each user would be running code similar to that
shown below:

∇ UPDATE;DATA;NAMES
[1] ⍝ Using the component file
[2] 'PERSONNEL' ⎕FSTIE 1
[3] NAMES←⊃∘⎕FREAD ¨ 1,¨⍳¯1+2⊃⎕FSIZE 1
[4] →END×⍳(⊂'Geoff')∊NAMES
[5] ('Geoff' 41 'Hounslow')⎕FAPPEND 1
[6] END:⎕FUNTIE 1

∇

The system function ⎕FHOLD provides the means for the user to temporarily
prevent other co-operating users from accessing one or more files. This is necessary
to allow a single logical update, perhaps involving more than one record or more
than one file, to be completed without interference from another user.

The code above is replaced by that below:

∇ UPDATE;DATA;NAMES
[1] ⍝ Using the component file
[2] 'PERSONNEL' ⎕FSTIE 1
[3] ⎕FHOLD 1
[4] NAMES←⊃∘⎕FREAD ¨ 1,¨⍳¯1+2⊃⎕FSIZE 1
[5] →END×⍳(⊂'Geoff')∊NAMES
[6] ('Geoff' 41 'Hounslow')⎕FAPPEND 1
[7] END:⎕FUNTIE 1 ⋄ ⎕FHOLD ⍳0

∇

Chapter 5: APL Files 223

Successive ⎕FHOLDs on a file executed by different users are queued by Dyalog
APL; once the first ⎕FHOLD is released, the next on the queue holds the file.
⎕FHOLDs are released by return to immediate execution, by ⎕FHOLD ⍬, or by
erasing the external variable.

It is easy to misunderstand the effect of ⎕FHOLD. It is NOT a file locking
mechanism that prevents other users from accessing the file. It only works if the
tasks that wish to access the file co-operate by queuing for access by issuing
⎕FHOLDs. It would be very inefficient to issue a ⎕FHOLD on a file then allow the
user to interactively edit the data with the hold in operation. What happens if he
goes to lunch? Any other user who wants to access the file and cooperates by
issuing a ⎕FHOLD would have to wait in the queue for 3 hours until the first user
returns, finishes his update and his ⎕FHOLD is released. It is usually more efficient
(as well as more friendly) to issue ⎕FHOLDs around a small piece of critical code.

Suppose we had a control file associated with our personnel data base. This control
file could be an external variable, or a component file. In both cases, the concept is
the same; only the commands needed to access the file are different. In this
example, we will use a component file:

'CONTROL'⎕FCREATE 1 ⍝ Create control file
(1 3⍴0 ¯1 0) ⎕FSTAC 1 ⍝ Allow everyone access
⍬ ⎕FAPPEND 1 ⍝ Set component 1 to empty
⎕FUNTIE 1 ⍝ And untie it

Now we'll allow our man that likes long lunch breaks to edit the file, but will
control the hold in a more efficient way:

Chapter 5: APL Files 224

∇ EDIT;CMP;CV
[1] ⍝ Share-tie the control file
[2] 'CONTROL' ⎕FSTIE 1
[3] ⍝ Share-tie the data file
[4] 'PERSONNEL' ⎕FSTIE 2
[5] ⍝ Find out which component the user wants to edit
[6] ASK:CMP←ASK∆WHICH∆RECORD
[7] ⍝ Hold the control file
[8] ⎕FHOLD 1
[9] ⍝ Read the control vector
[10] CV←⎕FREAD 1 1
[11] ⍝ Make control vector as big as the data file
[12] CV←(¯1+2⊃⎕FSIZE 2)↑CV
[13] ⍝ Look at flag for this component
[14] →(FREE,INUSE)[1+CMP⊃CV]
[15] ⍝ In use - tell user and release hold
[16] INUSE:'Record in use' ⋄ ⎕FHOLD ⍬ ⋄ →ASK
[17] ⍝ Ok to use - flag in-use and release hold
[18] FREE:CV[CMP]←1 ⋄ CV ⎕FREPLACE 1 1⋄ ⎕FHOLD ⍬
[19] ⍝ Let user edit the record
[20] EDIT∆RECORD RECORD
[21] ⍝ When he's finished, clear the control vector
[22] ⎕FHOLD 1
[23] CV←⎕FREAD 1 1 ⋄CV[CMP]←0 ⋄ CV ⎕FREPLACE 1 1
[26] ⎕FHOLD ⍬
[27] ⍝ And repeat
[28] →ASK

∇

Component 1 of our CONTROL file acts as a control vector. Its length is set equal
to the number of components in the PERSONNEL file, and an element is set to 1 if
a user wishes to access the corresponding data component. Only the control file is
ever subject to a ⎕FHOLD, and then only for a split-second, with no user inter-
action being performed whilst the hold is active.

When the first user runs the function, the relevant entry in the control vector will
be set to 1. If a second user accesses the database at the same time, he will have to
wait briefly whilst the control vector is updated. If he wants the same component
as the first user, he will be told that it is in use, and will be given the opportunity
to edit something else.

This simple mechanism allows us to lock the components of our file, rather the
than entire file. You can set up more informative control vectors than the one
above; for example, you could easily put the user name into the control vector and
this would enable you to tell the next user who is editing the component he is
interested in.

Chapter 5: APL Files 225

File Design
Our personnel database could be termed a record oriented system. All the
information relating to one person is easily obtained, and information relating to a
new person is easily added, but if we wish to find the oldest person, we have to
read ALL the records in the file.

It is sometimes more useful to have separate components, perhaps stored on
separate files, that hold indexes of the data fields that you may wish to search on.
For example, suppose we know that we always want to access our personnel
database by name. Then it would make sense to hold an index component of
names:

⍝ Extract name field from each data record
'PERSONNEL' ⎕FSTIE 1
NAMES←⊃∘⎕FREAD¨1,¨⍳¯1+2⊃⎕FSIZE 2

⍝ Create index file, and append NAMES
'INDEX' ⎕FCREATE 2
NAMES ⎕FAPPEND 2

Then if we want to find Pauline's data record:

NAMES←⎕FREAD 2,1 ⍝ Read index of names
CMP←NAMES⍳⊂'Pauline' ⍝ Search for Pauline
DATA←⎕FREAD 1,CMP ⍝ Read relevant record

There are many different ways to structure data files; you must design a structure
that is the most efficient for your application.

Internal Structure
If you are going to make a lot of use of APL files in your systems, it is useful for
you to have a rough idea of how Dyalog APL organises and manages the disk area
used by such files.

The internal structure of external variables and component files is the same, and
the examples given below apply to both.

Consider a component file with 3 components:

'TEMP' ⎕FCREATE 1
'One' 'Two' 'Three' ⎕FAPPEND¨1

Chapter 5: APL Files 226

Dyalog APL will write these components onto contiguous areas of disk:

.-. .-. .-.
|1| |2| |3|
.-----.-----.-------.
| One | Two | Three |
--------------------.

Replace the second component with something the same size:

'Six' ⎕FREPLACE 1 2

This will fit into the area currently used by component 2.

.-. .-. .-.
|1| |2| |3|
.-----.-----.-------.
| One | Six | Three |
--------------------.

If your system uses fixed length records, then the size of your components never
change, and the internal structure of the file remains static.

However, suppose we start replacing larger data objects:

'Bigger One' ⎕FREPLACE 1 1

This will not fit into the area currently assigned to component 1, so it is appended
to the end of the file. Dyalog APL maintains internal tables which contain the
location of each component; hence, even though the components may not be
physically stored in order, they can always be accessed in order.

.-. .-. .-.
|2| |3| |1|

.-----.-----.-------.------------.
|⎕⎕⎕⎕⎕| Six | Three | Bigger One |
---------------------------------.

The area that was occupied by component 1 now becomes free.

Now we'll replace component 3 with something bigger:

'BigThree' ⎕FREPLACE 1 3

Component 3 is appended to the end of the file, and the area that was used before
becomes free:

.-. .-. .-.
|2| |1| |3|

.-----.------------------.------------.----------.
|⎕⎕⎕⎕⎕| Six |⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕| Bigger One | BigThree |
---.

Chapter 5: APL Files 227

Dyalog APL keeps tables of the size and location of the free areas, as well as the
actual location of your data. Now we'll replace component 2 with something
bigger:

'BigTwo' ⎕FREPLACE 1 2

Free areas are used whenever possible, and contiguous holes are amalgamated.

.-. .-. .-.
|2| |1| |3|

.-----------.------------.------------.----------.
|⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕|BigTwo|⎕⎕⎕⎕⎕| Bigger One | BigThree |
---.

You can see that if you are continually updating your file with larger data objects,
then the file structure can become fragmented. At any one time, the disk area
occupied by your file will be greater than the area necessary to hold your data.
However, free areas are constantly being reused, so that the amount of unused
space in the file will seldom exceed 30%.

Whenever you issue a monadic ⎕FRESIZE command on a component file, Dyalog
APL COMPACTS the file; that is, it restructures it by reordering the components
and by amalgamating the free areas at the end of the file. It then truncates the file
and releases the disk space back to the operating system (note that some versions
of UNIX do not allow the space to be released). For a large file with many
components, this process may take a significant time.

Error Conditions
FILE SYSTEM NOT AVAILABLE

A FILE SYSTEM NOT AVAILABLE (Error code 28) error will be generated if
the operating system returns an unexpected error when attempting to get a lock on
a component file. In Windows environments this may indicate that opportunistic
locks (aka oplocks) are in use; they should be disabled if Dyalog components files
are being used.

FILE SYSTEM TIES USED UP

A FILE SYSTEM TIES USED UP (Error code 30) error will be generated when
an attempt is made to open more component files than is possible.

FILE TIED

A FILE TIED error is reported if you attempt to tie a file which another user has
exclusively tied.

Chapter 5: APL Files 228

Limitations
File Tie Quota

The File Tie Quota is the maximum number of files that a user may tie
concurrently. Dyalog APL itself allows a maximum of 1024 under UNIX and 512
under Windows, although in either case your installation may impose a lower
limit. When an attempt is made to exceed this limit, the report FILE TIE QUOTA
(Error code 31) is given. This error will also be generated if an attempt is made to
exceed the maximum number of open files that is imposed by the operating system.

File Name Quota

Dyalog APL records the names of each user's tied files in a buffer of 40960 bytes.
When this buffer is full, the report FILE NAME QUOTA USED UP (Error code
32) will be given. This is only likely to occur if long pathnames are used to
identify files.

The Effect of Buffering
Disk drives are fairly slow devices, so most operating systems take advantage of a
facility called buffering. This is shown in simple terms below:

.------------------.
| Operating System | .--------. .---------.
| instruction to |-->| BUFFER |--->| File on |
| write large data | ---------. | disk |
| object to a file | ----------.
-------------------.

When you issue a write to a disk area, the data is not necessarily sent straight to
the disk. Sometimes it is written to an internal buffer (or cache), which is usually
held in (fast) main memory. When the buffer is full, the contents are passed to the
disk. This means that at any one time, you could have data in the buffer, as well as
on the disk. If your machine goes down whilst in this state, you could have a
partially updated file on the disk. In these circumstances, the operating system
generally recovers your file automatically.

If this facility is exploited, it offers very fast file updating. For systems that are I/O
bound, this is a very important consideration. However, the disadvantage is that
whilst it may appear that a write operation has completed successfully, part of the
data may still be residing in the buffer, waiting to be flushed out to the disk. It is
usually possible to force the buffer to empty; see your operating system manuals
for details (UNIX automatically invokes the sync() command every few seconds
to flush its internal buffers).

Chapter 5: APL Files 229

Dyalog APL exploits this facility, employing buffers internal to APL as well as
making use of the system buffers. Of course, these techniques cannot be used when
the file is shared with other users; obviously, the updates must be written
immediately to the disk. However, if the file is exclusively tied, then several layers
of buffers are employed to ensure that file access is as fast as possible.

You can ensure that the contents of all internal buffers are flushed to disk by
issuing ⎕FUNTIE ⍬ at any time.

Integrity and Security
The structure of component files, the asynchronous nature of the buffering
performed by APL, by the Operating System, and by the external device sub-
system, introduces the potential danger that a component file might become
damaged. To prevent this happening, the component file system includes optional
journaling and check-sum features. These are optional because the additional
security these features provide comes at the cost of reduced performance. You can
choose the level of security that is appropriate for your application.

When journaling is enabled (see ⎕FPROPS), files are updated using a journal
which effectively prevents system or network failures from causing file damage.

Additional security is provided by the check sum facility which enables
component files to be repaired using the system function ⎕FCHK. See Language
Reference Guide: File Check and Repair.

Level 1 journaling protects a component file from damage caused by an abnormal
termination of the APL process. This could occur if the process is deliberately or
accidentally terminated by the user or by the Operating System, or by an error in
Dyalog APL.

Level 2 journaling provides protection not just against the possibility that the APL
process terminates abnormally, but that the Operating System itself fails. However,
a damaged component file must be explicitly repaired using the system function
⎕FCHK which will repair any damaged components by rolling them back to their
previous states.

Level 3 provides the same level of protection as Level 2, but following the
abnormal termination of either APL or the Operating System, the rollback of an
incomplete update will be automatic and no explicit repair will be needed.

Higher levels of Journaling inevitably reduce the performance of component file
updates.

For further information, see ⎕FPROPS and ⎕FCHK.

Chapter 5: APL Files 230

Operating System Commands
APL files are treated as normal data files by the operating system, and may be
manipulated by any of the standard operating system commands.

Do not use operating system commands to copy, erase or move component files
that are tied and in use by an APL session.

Chapter 6: Error Trapping 231

Chapter 6:

Error Trapping

Standard Error Action
The standard system action in the event of an error or interrupt whilst executing an
expression is to suspend execution and display an error report. If necessary, the
state indicator is cut back to a statement such that there is no halted locked
function visible in the state indicator.

The error report consists of up to three lines

1. The error message, preceded by the symbol ⍎ if the error occurred while
evaluating the Execute function.

2. The statement in which the error occurred (or expression being evaluated by
the Execute function), preceded by the name of the function and line
number where execution is suspended unless the state indicator has been cut
back to immediate execution mode. If the state indicator has been cut back
because of a locked function in execution, the displayed statement is that
from which the locked function was invoked.

3. The symbol ^ under the last referenced symbol or name when the error
occurred. All code to the right of the ^ symbol in the expression will have
been evaluated.

Examples

X PLUS U
VALUE ERROR

X PLUS U
^

FOO
INDEX ERROR
FOO[2] X←X+A[I]

^
CALC

⍎DOMAIN ERROR
CALC[5] ÷0

^

Chapter 6: Error Trapping 232

Error Trapping Concepts
The purpose of this section is to show some of the ways in which the ideas of error
trapping can be used to great effect to change the flow of control in a system.

First, we must have an idea of what is meant by error trapping. We are all used to
entering some duff APL code, and seeing a (sometimes) rather obscure, esoteric
error message echoed back:

10÷0
DOMAIN ERROR

10÷0
^

This message is ideal for the APL programmer, but not so for the end user. We
need a way to bypass the default action of APL, so that we can take an action of
our own, thereby offering the end user a more meaningful message.

Every error message reported by Dyalog APL has a corresponding error number (for
a list of error codes and message, see ⎕TRAP, Language Reference). Many of these
error numbers plus messages are common across all versions of APL. We can see
that the code for DOMAIN ERROR is 11, whilst LENGTH ERROR has code 5.

Dyalog APL provides two distinct but related mechanisms for the trapping and
control of errors. The first is based on the control structure :Trap ...
:EndTrap, and the second, on the system variable ⎕TRAP. The control structure
is easier to administer and so is recommended for normal use, while the system
variable provides slightly finer control and may be necessary for specialist
applications.

Last Error number and Diagnostic Message
Dyalog APL keeps a note of the last error that occurred, and provides this
information through system functions: ⎕EN, ⎕EM and ⎕DM.

10÷0
DOMAIN ERROR

10÷0
^

Error Number for last occurring error:

⎕EN
11

Error Message associated with code 11:

⎕EM 11
DOMAIN ERROR

Chapter 6: Error Trapping 233

⎕DM (Diagnostic Message) is a 3 element nested vector containing error message,
expression and caret:

⎕DM
DOMAIN ERROR 10÷0 ^

Use function DISPLAY to show structure:

DISPLAY ⎕DM
 ┌→─────────────────────────────────────┐
 │ ┌→───────────┐ ┌→─────────┐ ┌→─────┐ │
 │ │DOMAIN ERROR│ │ 10÷0│ │ ∧│ │
 │ └────────────┘ └──────────┘ └──────┘ │
 └∊─────────────────────────────────────┘

Mix (↑) of this vector produces a matrix that displays the same as the error message
produced by APL:

↑⎕DM
DOMAIN ERROR

10÷0
^

Error Trapping Control Structure
You can embed a number of lines of code in a :Trap control structure within a
defined function.

[1] ...
[2] :Trap 0
[3] ...
[4] ...
[5] :EndTrap
[6] ...

Now, whenever any error occurs in one of the enclosed lines, or in a function
called from one of the lines, processing stops immediately and control is transferred
to the line following the :EndTrap. The 0 argument to :Trap, in this case
represents any error. To trap only specific errors, you could use a vector of error
numbers:

[2] :Trap 11 2 3

Notice that in this case, no extra lines are executed after an error. Control is passed
to line [6] either when an error has occurred, or if all the lines have been
executed without error. If you want to execute some code only after an error, you
could re-code the example like this:

Chapter 6: Error Trapping 234

[1] ...
[2] :Trap 0
[3] ...
[4] ...
[5] :Else
[6] ...
[7] ...
[8] :EndTrap
[9] ...

Now, if an error occurs in lines [3-4], (or in a function called from those lines),
control will be passed immediately to the line following the :Else statement. On
the other hand, if all the lines between :Trap and :Else complete successfully,
control will pass out of the control structure to (in this case) line [9].

The final refinement is that specific error cases can be accommodated using :Case
[List] constructs in the same manner as the :Select control structure.

[1] :Trap 17+⍳21 ⍝ Component file errors.
[2] tie←name ⎕ftie 0 ⍝ Try to tie file
[3] 'OK'
[4] :Case 22
[5] 'Can''t find ',name
[6] :CaseList 25+⍳13
[7] 'Resource Problem'
[8] :Else
[9] 'Unexpected Problem'
[10] :EndTrap

Note that :Trap can be used in conjunction with ⎕SIGNAL described below.

Traps can be nested. In the following example, code in the inner trap structure
attempts to tie a component file, and if unsuccessful, tries to create one. In either
case, the tie number is then passed to function ProcessFile. If an error other
than 22 (FILE NAME ERROR) occurs in the inner trap structure, or an error occurs
in function ProcessFile (or any of its called function), control passes to line
immediately to line [9].

[1] :Trap 0
[2] :Trap 22
[3] tie←name ⎕ftie 0
[4] :Else
[5] tie←name ⎕fcreate 0
[6] :EndTrap
[7] ProcessFile tie
[8] :Else
[9] 'Unexpected Error'
[10] :EndTrap

Chapter 6: Error Trapping 235

Trap System Variable: ⎕TRAP
The second way of trapping errors is to use the system variable: ⎕TRAP.

⎕TRAP, can be assigned a nested vector of trap specifications. Each trap
specification is itself a nested vector, of length 3, with each element defined as:

list of error
numbers The error numbers we are interested in.

action code Either 'E' (Execute) or 'C' (Cut Back). There are
others, but they are seldom used.

action to be taken APL expression, usually a branch statement or a call to
an APL function.

So a single trap specification may be set up as:

⎕TRAP←5 'E' 'ACTION1'

and a multiple trap specification as:

⎕TRAP←(5 'E' 'ACTION1')((1 2 3) 'C' 'ACTION2')

The action code E tells APL that you want your action to be taken in the function
in which the error occurred, whereas the code C indicates that you want your
action to be taken in the function where the ⎕TRAP was localised. If necessary,
APL must first travel back up the state indicator (cut-back) until it reaches that
function.

Example Traps
Dividing by Zero
Let's try setting a ⎕TRAP on DOMAIN ERROR:

MSG←'''Please give a non-zero right arg'''
⎕TRAP←11 'E' MSG

When we enter:

10÷0

APL executes the expression, and notes that it causes an error number 11. Before
issuing the standard error, it scans its ⎕TRAP table, to see if you were interested
enough in that error to set a trap; you were, so APL executes the action specified
by you:

10÷0
Please give non-zero right arg

Chapter 6: Error Trapping 236

Let's reset our ⎕TRAP:

⎕TRAP←0⍴⎕TRAP ⍝ No traps now set

and write a defined function to take the place of the primitive function ÷:

∇ R←A DIV B
[1] R←A÷B
[2] ∇

Then run it:

10 DIV 0
DOMAIN ERROR

DIV[1] R←A÷B
^

Let's edit our function, and include a localised ⎕TRAP:

∇ R←A DIV B;⎕TRAP
[1] ⍝ Set the trap
[2] ⎕TRAP←11 'E' '→ERR1'
[3] ⍝ Do the work; if it results in error 11,
[4] ⍝ execute the trap
[5] R←A÷B
[6] ⍝ All OK if we got to here, so exit
[7] →0
[8] ⍝ Will get here only if error 11 occurred
[9] ERR1:'Please give a non-zero right arg'

∇

Running the function with good and bad arguments has the desired effect:

10 DIV 2
5

10 DIV 0
Please give a non-zero right arg

⎕TRAP is a variable like any other, and since it is localised in DIV, it is only
effective in DIV and any other functions that may be called by DIV. So

10÷0
DOMAIN ERROR

10÷0
^

still gives an error, since there is no trap set in the global environment.

Chapter 6: Error Trapping 237

Other Errors
What happens to our function if we run it with other duff arguments:

1 2 3 DIV 4 5
LENGTH ERROR
DIV [4] R←A÷B

^

Here is an error that we have taken no account of.

Change DIV to take this new error into account:

∇ R←A DIV B;⎕TRAP
[1] ⍝ Set the trap
[2] ⎕TRAP←(11 'E' '→ERR1')(5 'E' '→ERR2')
[3] ⍝ Do the work; if it results in error 11,
[4] ⍝ execute the trap
[5] R←A ÷ B
[6] ⍝ All OK if we got to here, so exit
[7] →0
[8] ⍝ Will get here only if error 11 occurred
[9] ERR1:'Please give a non-zero right arg'⋄→0
[10] ⍝ Will get here only if error 5 occurred
[11] ERR2:'Arguments must be same length'

∇

)RESET

1 2 3 DIV 4 5
Arguments must be the same length

But here's yet another problem that we didn't think of:

(2 3⍴⍳6) DIV (2 3 4⍴⍳24)
RANK ERROR
DIV [4] R←A÷B

^

Global Traps
Often when we are writing a system, we can't think of everything that may go
wrong ahead of time; so we need a way of catching "everything else that I may not
have thought of". The error number used for "everything else" is zero:

)RESET

Set a global trap:

⎕TRAP ← 0 'E' ' ''Invalid arguments'' '

Chapter 6: Error Trapping 238

And run the function:

(2 3⍴⍳6) DIV (2 3 4⍴⍳24)
Invalid arguments

In this case, when APL executed line 4 of our function DIV, it encountered an
error number 4 (RANK ERROR). It searched the local trap table, found nothing
relating to error 4, so searched further up the stack to see if the error was
mentioned anywhere else. It found an entry with an associated Execute code, so
executed the appropriate action AT THE POINT THAT THE ERROR
OCCURRED. Let's see what's in the stack:

)SI
DIV[4]*

↑⎕DM
RANK ERROR
DIV[4] R←A÷B

^

So although our action has been taken, execution has stopped where it normally
would after a RANK ERROR.

Dangers
We must be careful when we set global traps; let's call the non-existent function
BUG whenever we get an unexpected error:

)RESET
⎕TRAP ← 0 'E' 'BUG'
(2 3⍴⍳6) DIV (2 3 4⍴⍳24)

Nothing happens, since APL traps a RANK ERROR on line 4 of DIV, so executes
the trap statement, which causes a VALUE ERROR, which activates the trap action,
which causes a VALUE ERROR, which etc. etc. If we had also chosen to trap on
1000 (ALL INTERRUPTS), then we'd be in trouble!

Let's define a function BUG:

∇ BUG
[1] ⍝ Called whenever there is an unexpected error
[2] '*** UNEXPECTED ERROR OCCURRED IN: ',⊃1↓⎕SI
[3] '*** PLEASE CALL YOUR SYSTEM ADMINISTRATOR'
[4] '*** WORKSPACE SAVED AS BUG.',⊃1↓⎕SI
[5] ⍝ Tidy up ... reset ⎕LX, untie files ... etc
[6] ⎕SAVE 'BUG.',⊃1↓⎕SI
[7] '*** LOGGING YOU OFF THE SYSTEM'
[8] ⎕OFF

∇

Chapter 6: Error Trapping 239

Now, whenever we run our system and an unexpected error occurs, our BUG
function will be called.

10 DIV 0
Please give non-zero right arg

(2 3⍴⍳6) DIV (2 3 4⍴⍳12)

*** UNEXPECTED ERROR OCCURRED IN: DIV
*** PLEASE CALL YOUR SYSTEM ADMINISTRATOR'
*** WORKSPACE SAVED AS BUG.DIV
*** LOGGING YOU OFF THE SYSTEM'

The system administrator can then load BUG.DIV, look at the SI stack, discover
the problem, and fix it.

Looking out for Specific Problems
In many cases, you can of course achieve the same effect of a trap by using APL
code to detect the problem before it happens. Consider the function TIE∆FILE,
which checks to see if a file already exists before it tries to access it:

∇ R←TIE∆FILE FILE;FILES
[1] ⍝ Tie file FILE with next available tie number
[2] ⍝
[3] ⍝ All files in my directory
[4] FILES←⎕FLIB 'mydir'
[5] ⍝ Remove trailing blanks
[6] FILES←dbr¨↓FILES
[7] ⍝ Required file in list?
[8] →ERR×⍳~(⊂FILE)∊FILES
[9] ⍝ Tie file with next number
[10] FILE ⎕FTIE R←1+⌈/0,⎕FNUMS
[11] ⍝ ... and exit
[12] →0
[13] ⍝ Error message
[14] ERR:R←'File does not exist'

∇

Chapter 6: Error Trapping 240

This function executes the same code whether the file name is right or wrong, and
it could take a while to get all the file names in your directory. It would be neater,
and more efficient to take action ONLY when the file name is wrong:

∇ R←TIE∆FILE FILE;⎕TRAP
[1] ⍝ Tie file FILE with next available tie number
[2] ⍝
[3] ⍝ Set trap
[4] ⎕TRAP←22 'E' '→ERR'
[5] ⍝ Tie file with next number
[6] FILE ⎕FTIE R←1+⌈/0,⎕FNUMS
[7] ⍝ ... and exit if OK
[8] →0
[9] ⍝ Error message
[10] ERR:R←'File does not exist'

Cut-Back versus Execute
Let us consider the effect of using Cut-Back instead of Execute. Consider the
system illustrated below, in which the function REPORT gives the user the option
of 4 reports to be generated:

REPORT
|

.-------------------------.
| | | |

REP1 REP2 REP3 REP4
|

.----.----.
| | |

... DIV ...

∇ REPORT;OPTIONS;OPTION;⎕TRAP
[1] ⍝ Driver functions for report sub-system. If an
[2] ⍝ unexpected error occurs, take action in the
[3] ⍝ function where the error occurred
[4] ⍝
[5] ⍝ Set global trap
[6] ⎕TRAP←0 'E' 'BUG'
[7] ⍝ Available options
[8] OPTIONS←'REP1' 'REP2' 'REP3' 'REP4'
[9] ⍝ Ask user to choose
[10] LOOP:→END×⍳0=⍴OPTION←MENU OPTIONS
[11] ⍝ Execute relevant function
[12] ⍎OPTION
[13] ⍝ Repeat until EXIT
[14] →LOOP
[15] ⍝ Now end
[16] END:

Chapter 6: Error Trapping 241

Suppose the user chooses REP3, and an unexpected error occurs in DIV. The good
news is that the System Administrator gets a snapshot copy of the workspace that
he can play about with:

)LOAD BUG.DIV ⍝ Load workspace
saved

)SI ⍝ Where did error occur?
DIV[4]*
REP3[6]
⍎
REPORT[7]

↑⎕DM ⍝ What happened?
RANK ERROR
DIV[4] R←A÷B

^
∇ ⍝ Edit function on top of stack

[0]R←A DIV B
.........

The bad news is, our user is locked out of the whole system, even though it may
only be REP3 that has a problem. We can get around this by making use of the
CUT-BACK action code.

∇ REPORT;OPTIONS;OPTION;⎕TRAP
[1] ⍝ Driver functions for report sub-system. If an
[2] ⍝ unexpected error occurs, cut the stack back
[3] ⍝ to this function, then take action
[4] ⍝
[5] ⍝ Set global trap
[6] ⎕TRAP←0 'C' '→ERR'
[7] ⍝ Available options
[8] OPTIONS←'REP1' 'REP2' 'REP3' 'REP4'
[9] ⍝ Ask user to choose

[10] LOOP:→END×⍳0=⍴OPTION←MENU OPTIONS
[11] ⍝ Execute relevant function
[12] ⍎OPTION
[13] ⍝ Repeat until EXIT
[14] →LOOP
[15] ⍝ Tell user ...
[16] ERR:MESSAGE'Unexpected error in',OPTION
[17] ⍝ ... what's happening
[18] MESSAGE'Removing from list'
[19] ⍝ Remove option from list
[20] OPTIONS←OPTIONS~⊂OPTION
[21] ⍝ And repeat
[22] →LOOP
[23] ⍝ End
[24] END:

Chapter 6: Error Trapping 242

Suppose the user runs this version of REPORT and chooses REP3. When the
unexpected error occurs in DIV, APL will check its trap specifications, and see that
the relevant trap was set in REPORT with a cut-back code. APL therefore cuts back
the stack to the function in which the trap was localised, THEN takes the
specified action. Looking at the SI stack above, we can see that APL must jump
out of DIV, then REP3, then ⍎, to return to line 7 of REPORT; THEN it takes the
specified action.

Signalling Events
It would be useful to be able to employ the idea of cutting back the stack and
taking an alternative route through the code, when a condition other than an APL
error occurs. To achieve this, we must be able to trap on errors other than APL
errors, and we must be able to define these errors to APL. We do the former by
using error codes in the range 500 to 999, and the latter by using ⎕SIGNAL.

Consider our system; ideally, when an unexpected error occurs, we want to save a
snapshot copy of our workspace (execute BUG in place), then immediately jump
back to REPORT and reduce our options. We can achieve this by changing our
functions a little, and using ⎕SIGNAL:

∇ REPORT;OPTIONS;OPTION;⎕TRAP
[1] ⍝ Driver functions for report sub-system. If an
[2] ⍝ unexpected error occurs, make a snapshot copy
[3] ⍝ of the workspace, then cutback the stack to
[4] ⍝ this function, reduce the option list & resume
[5] ⍝ Set global trap
[6] ⎕TRAP←(500 'C' '→ERR')(0 'E' 'BUG')
[7] ⍝ Available options
[8] OPTIONS←'REP1' 'REP2' 'REP3' 'REP4'
[9] ⍝ Ask user to choose

[10] LOOP:→END×⍳0=⍴OPTION←MENU OPTIONS
[11] ⍝ Execute relevant function
[12] ⍎OPTION
[13] ⍝ Repeat until EXIT
[14] →LOOP
[15] ⍝ Tell user ...
[16] ERR:MESSAGE'Unexpected error in',OPTION
[17] ⍝ ... what's happening
[18] MESSAGE'Removing from list'
[19] ⍝ Remove option from list
[20] OPTIONS←OPTIONS~⊂OPTION
[21] ⍝ And repeat
[22] →LOOP
[23] ⍝ End
[24] END:

Chapter 6: Error Trapping 243

∇ BUG
[1] ⍝ Called whenever there is an unexpected error
[2] '*** UNEXPECTED ERROR OCCURRED IN: ',⊃1↓⎕SI
[3] '*** PLEASE CALL YOUR SYSTEM ADMINISTRATOR'
[4] '*** WORKSPACE SAVED AS BUG.',⊃1↓⎕SI
[5] ⍝ Tidy up ... reset ⎕LX, untie files ... etc
[6] ⎕SAVE 'BUG.',⊃1↓⎕SI
[7] '*** RETURNING TO DRIVER FOR RESELECTION'
[8] ⎕SIGNAL 500

∇

Now when the unexpected error occurs, the first trap specification catches it, and
the BUG function is executed in place. Instead of logging the user off as before, an
error 500 is signalled to APL. APL checks its trap specifications, sees that 500
has been set in REPORT as a cut-back, so cuts back to REPORT before branching
to ERR.

Flow Control
Error handling, which employs a combination of all the system functions and
variables described, allows us to dynamically alter the flow of control through our
system, as well as allow us to handle errors gracefully. It is a very powerful
facility, which is simple to use, but is often neglected.

Handling Unexpected Application Errors in
Windows

When running an APL application, it is possible that an unexpected error will
occur.

It is advisable to set a trap at the top level of the application which traps all
possible errors; in this way the programmer can cater for any errors that are not
already explicitly trapped by, for example, writing information to a file, or saving
the workspace. On UNIX in particular it may also be useful to call ⎕OFF with a
positive integer to the right of the ⎕OFF - this is used as the exit code to APL.

It is also possible to generate an error which it is not possible to trap in APL code;
examples include attempting to access the session in a runtime APL, or generating
an error which causes APL to crash (for example, by the incorrect use of a shared
library function).

By default in such cases, APL will pop up a message box, and cannot continue
until the user selects the OK button.

It is possible to override this behaviour by setting the configuration parameter
DYALOG_NOPOPUPS to 1. This will cause system popups to be suppressed; it does
not suppress application popups generated by APL code.

Chapter 6: Error Trapping 244

With DYALOG_NOPOPUPS=1 APL will terminate silently, except that an aplcore
file will be generated. The location of the aplcore file can be controlled by the
configuration parameter APLCoreName. It may be more useful to ask the
operating system to handle the unexpected termination of the APL process, for
example, by bringing up a debugger, or Dr Watson. This can be achieved by
setting the configuration parameter PassExceptionsToOpSys to 1. In most
cases it is useful to set DYALOG_NOPOPUPS=1 too.

It is also possible to log such events to the Windows Event Log. Setting the
configuration parameter DYALOG_EVENTLOGGINGLEVEL to a value greater than
0 will cause this to happen. If the configuration parameter DYALOG_
EVENTLOGNAME is not set, then an event log called Dyalog will be created which
can be viewed from the Windows Event Viewer. The first time that such an event
occurs the following entries will be added to the Windows registry:

The key HKEY_LOCAL_
MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Dyalog APL with values

Value Name Value

Sources Dyalog APL

MaxSize 150000000

The key HKEY_LOCAL_
MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Dyalog APL\Dyalog
APL with values

Value Name Value

EventMessageFile DYALOG\dyalog.exe

CategoryMessageFile DYALOG\dyalog.exe

Category Count 5

TypesSupported 7

where DYALOG is the directory where Dyalog APL is installed.

If DYALOG_EVENTLOGNAME is set, it should contain the name of the log to which
events will be logged. For example

DYALOG_EVENTLOGNAME="MyApp Event Log"

When set, no registry entries are added by Dyalog, but if the above registry entries
have been manually created, the events will be logged to an event log which has
the name "MyApp Event Log". If the registry entries described above have not
been created, the events will instead be logged into the Application Log, and the
Event Viewer will display text similar to the following when events are viewed:

Chapter 6: Error Trapping 245

The description for Event ID (1) in Source (MyApp Event Log) cannot be found.
The local computer may not have the necessary registry information or message
DLL files to display messages from a remote computer. You may be able to use the
/AUXSOURCE= flag to retrieve this description; see Help and Support for details.
The following information is part of the event: Syserror: 995 code: 2 Aplcore
"aplcore1" has been created.

Chapter 6: Error Trapping 246

Chapter 7: Error Messages 247

Chapter 7:

Error Messages

Introduction
The error messages reported by APL are described in this section. Standard APL
messages that provide information or report error conditions are summarised in APL
Error Messages on page 248 and described later in alphabetical order.

APL also reports messages originating from the Operating System (WINDOWS or
UNIX) which are summarised in Typical Operating System Error Messages on
page 251 and Windows Operating System Messages on page 252. Only those
Operating System error messages that might occur through normal usage of APL
operations are described here. Other messages could occur as a direct or indirect
consequence of using the Operating System interface functions ⎕CMD and ⎕SH or
system commands)CMD and)SH, or when a non-standard device is specified for
the system functions ⎕ARBIN or ⎕ARBOUT. Refer to the WINDOWS or UNIX
reference manual for further information about these messages.

Most errors may be trapped using the system variable ⎕TRAP, thereby retaining
control and inhibiting the standard system action and error report. The table,
Language Reference Guide: Trappable Event Codes identifies the error code for
trappable errors. The error code is also identified in the heading block for each
error message when applicable.

See Dyalog Programming Reference Guide for a full description of the Error
Handling facilities in Dyalog APL.

Chapter 7: Error Messages 248

APL Errors
Table 1: APL Error Messages
Error Code Report

bad ws

cannot create name

clear ws

copy incomplete

defn error

incorrect command

insufficient resources

is name

Name already exists

name is not a ws

name saved date/time

Namespace does not exist

not copied name

not found name

not saved this ws is name

sys error number

too many names

warning duplicate label

warning duplicate name

warning label name present in line 0

warning pendent operation

warning unmatched brackets

warning unmatched parentheses

was name

ws not found

ws too large

Chapter 7: Error Messages 249

Error Code Report

1 WS FULL

2 SYNTAX ERROR

3 INDEX ERROR

4 RANK ERROR

5 LENGTH ERROR

6 VALUE ERROR

7 FORMAT ERROR

10 LIMIT ERROR

11 DOMAIN ERROR

12 HOLD ERROR

16 NONCE ERROR

18 FILE TIE ERROR

19 FILE ACCESS ERROR

20 FILE INDEX ERROR

21 FILE FULL

22 FILE NAME ERROR

23 FILE DAMAGED

24 FILE TIED

25 FILE TIED REMOTELY

26 FILE SYSTEM ERROR

28 FILE SYSTEM NOT AVAILABLE

30 FILE SYSTEM TIES USED UP

31 FILE TIE QUOTA USED UP

32 FILE NAME QUOTA USED UP

34 FILE SYSTEM NO SPACE

35 FILE ACCESS ERROR - CONVERTING FILE

38 FILE COMPONENT DAMAGED

52 FIELD CONTENTS RANK ERROR

53 FIELD CONTENTS TOO MANY COLUMNS

Chapter 7: Error Messages 250

Error Code Report

54 FIELD POSITION ERROR

55 FIELD SIZE ERROR

56 FIELD CONTENTS/TYPE MISMATCH

57 FIELD TYPE/BEHAVIOUR UNRECOGNISED

58 FIELD ATTRIBUTES RANK ERROR

59 FIELD ATTRIBUTES LENGTH ERROR

60 FULL-SCREEN ERROR

61 KEY CODE UNRECOGNISED

62 KEY CODE RANK ERROR

63 KEY CODE TYPE ERROR

70 FORMAT FILE ACCESS ERROR

71 FORMAT FILE ERROR

72 NO PIPES

76 PROCESSOR TABLE FULL

84 TRAP ERROR

90 EXCEPTION

92 TRANSLATION ERROR

99 INTERNAL ERROR

1003 INTERRUPT

1005 EOF INTERRUPT

1006 TIMEOUT

1007 RESIZE

1008 DEADLOCK

Chapter 7: Error Messages 251

Operating System Error Messages
Table 2 refers to UNIX Operating Systems under which the error code reported by
Dyalog APL is (100 + the UNIX file error number). The text for the error message,
which is obtained by calling perror(), will vary from one type of system to
another.

Table 3 refers to the equivalent error messages under Windows.

Table 2: Typical Operating System Error Messages
Error Code Report

101 FILE ERROR 1 Not owner

102 FILE ERROR 2 No such file or directory

103 FILE ERROR 3 No such process

104 FILE ERROR 4 Interrupted system call

105 FILE ERROR 5 I/O error

106 FILE ERROR 6 No such device or address

107 FILE ERROR 7 Arg list too long

108 FILE ERROR 8 Exec format error

109 FILE ERROR 9 Bad file number

110 FILE ERROR 10 No children

111 FILE ERROR 11 No more processes

112 FILE ERROR 12 Not enough code

113 FILE ERROR 13 Permission denied

114 FILE ERROR 14 Bad address

115 FILE ERROR 15 Block device required

116 FILE ERROR 16 Mount device busy

117 FILE ERROR 17 File exists

118 FILE ERROR 18 Cross-device link

119 FILE ERROR 19 No such device

120 FILE ERROR 20 Not a directory

121 FILE ERROR 21 Is a directory

Chapter 7: Error Messages 252

Error Code Report

122 FILE ERROR 22 Invalid argument

123 FILE ERROR 23 File table overflow

124 FILE ERROR 24 Too many open files

125 FILE ERROR 25 Not a typewriter

126 FILE ERROR 26 Text file busy

127 FILE ERROR 27 File too large

128 FILE ERROR 28 No space left on device

129 FILE ERROR 29 Illegal seek

130 FILE ERROR 30 Read-only file system

131 FILE ERROR 31 Too many links

132 FILE ERROR 32 Broken pipe

133 FILE ERROR 33 Math argument

134 FILE ERROR 34 Result too large

Windows Operating System Error Messages
Table 3: Windows Operating System Messages
Error Code Report

101 FILE ERROR 1 No such file or directory

102 FILE ERROR 2 No such file or directory

103 FILE ERROR 3 Exec format error

105 FILE ERROR 5 Not enough memory

106 FILE ERROR 6 Permission denied

107 FILE ERROR 7 Argument list too big

108 FILE ERROR 8 Exec format error

109 FILE ERROR 9 Bad file number

111 FILE ERROR 11 Too many open files

112 FILE ERROR 12 Not enough memory

113 FILE ERROR 13 Permission denied

114 FILE ERROR 14 Result too large

Chapter 7: Error Messages 253

115 FILE ERROR 15 Resource deadlock would occur

117 FILE ERROR 17 File exists

118 FILE ERROR 18 Cross-device link

122 FILE ERROR 22 Invalid argument

123 FILE ERROR 23 File table overflow

124 FILE ERROR 24 Too many open files

133 FILE ERROR 33 Argument too large

134 FILE ERROR 34 Result too large

145 FILE ERROR 45 Resource deadlock would occur

APL Error Messages
There follows an alphabetical list of error messages reported from within Dyalog
APL.

bad ws

This report is given when an attempt is made to)COPY or)PCOPY from a file that
is not a valid workspace file. Invalid files include workspaces that were created by
a version of Dyalog APL later than the version currently being used.

cannot create name

This report is given when an attempt is made to)SAVE a workspace with a name
that is either the name of an existing, non-workspace file, or the name of a
workspace that the user does not have permission to overwrite or create.

clear ws

This message is displayed when the system command)CLEAR is issued.

Example

)CLEAR
clear ws

Chapter 7: Error Messages 254

copy incomplete

This report is given when an attempted)COPY or)PCOPY fails to complete.
Reasons include:

l Failure to identify the incoming file as a workspace.
l Not enough active workspace to accommodate the copy.

DEADLOCK 1008

If two threads succeed in acquiring a hold of two different tokens, and then each
asks to hold the other token, they will both stop and wait for the other to release
its token. The interpreter detects such cases and issues an error (1008) DEADLOCK.

defn error

This report is given when either:

l The system editor is invoked in order to edit a function that does not exist,
or the named function is pendent or locked, or the given name is an object
other than a function.

l The system editor is invoked to define a new function whose name is
already active.

l The header line of a function is replaced or edited in definition mode with a
line whose syntax is incompatible with that of a header line. The original
header line is re-displayed by the system editor with the cursor placed at the
end of the line. Back-spacing to the beginning of the line followed by line-
feed restores the original header line.

Examples

X←1
∇X

defn error

∇FOO[0⎕]
[0] R←FOO
[0] R←FOO:X
defn error
[0] R←FOO:X

⎕LOCK'FOO'
∇FOO[⎕]

defn error

Chapter 7: Error Messages 255

DOMAIN ERROR 11

This report is given when either:

l An argument of a function is not of the correct type or its numeric value is
outside the range of permitted values or its character value does not
constitute valid name(s) in the context.

l An array operand of an operator is not an array, or it is not of the correct
type, or its numeric value is outside the range of permitted values. A
function operand of an operator is not one of a prescribed set of functions.

l A value assigned to a system variable is not of the correct type, or its
numeric value is outside the range of permitted values

l The result produced by a function includes numeric elements which cannot
be fully represented.

Examples

1÷0
DOMAIN ERROR

1÷0
^

(×∘'CAT')2 4 6
DOMAIN ERROR

(×∘'CAT')2 4 6
^

⎕IO←5
DOMAIN ERROR

⎕IO←5
^

EOF INTERRUPT 1005

This report is given on encountering the end-of-file when reading input from a file.
This condition could occur when an input to APL is from a file.

EXCEPTION 90

This report is given when a Microsoft .NET object throws an exception. For details
see Language Reference Guide: Exception System Function.

Chapter 7: Error Messages 256

FIELD CONTENTS RANK ERROR 52

This report is given if a field content of rank greater than 2 is assigned to ⎕SM.

FIELD CONTENTS TOO MANY COLUMNS 53

This report is given if the content of a numeric or date field assigned to ⎕SM has
more than one column.

FIELD POSITION ERROR 54

This report is given if the location of the field assigned to ⎕SM is outside the
screen.

FIELD CONTENTS TYPE MISMATCH 56

This report is given if the field contents assigned to ⎕SM does not conform with
the given field type e.g. character content with numeric type.

FIELD TYPE BEHAVIOUR UNRECOGNISED 57

This report is given if the field type or behaviour code assigned to ⎕SM is invalid.

FIELD ATTRIBUTES RANK ERROR 58

This report is given if the current video attribute assigned to ⎕SM is non-scalar but
its rank does not match that of the field contents.

FIELD ATTRIBUTES LENGTH ERROR 59

This report is given if the current video attribute assigned to ⎕SM is non-scalar but
its dimensions do not match those of the field contents.

FULL SCREEN ERROR 60

This report is given if the required full screen capabilities are not available to ⎕SM.
This report is only generated in UNIX environments.

Chapter 7: Error Messages 257

KEY CODE UNRECOGNISED 61

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is not recognised as
a valid code. It will also be generated if you attempt to generate a KeyPress event
with an invalid Input Code.

KEY CODE RANK ERROR 62

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is not a scalar or a
vector.

KEY CODE TYPE ERROR 63

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is numeric or
nested; i.e. is not a valid key code.

FORMAT FILE ACCESS ERROR 70

This report is given if the date format file to be used by ⎕SM does not exist or
cannot be accessed.

FORMAT FILE ERROR 71

This report is given if the date format file to be used by ⎕SM is ill-formed.

Chapter 7: Error Messages 258

FILE ACCESS ERROR 19

This report is given when the user attempts to execute a file system function for
which the user is not authorised, or has supplied the wrong passnumber. It also
occurs if the file specified as the argument to ⎕FERASE or ⎕FRENAME is not
exclusively tied.

Examples

'SALES' ⎕FSTIE 1

⎕FRDAC 1
0 4121 0
0 4137 99

X ⎕FREPLACE 1
FILE ACCESS ERROR

X ⎕FREPLACE 1
^

'SALES' ⎕FERASE 1
FILE ACCESS ERROR

'SALES' ⎕FERASE 1
^

FILE ACCESS ERROR CONVERTING

When a new version of Dyalog APL is used, it may be that improvements to the
component file system demand that the internal structure of component files must
alter. This alteration is performed by the interpreter on the first occasion that the
file is accessed. If the operating system file permissions deny the ability to perform
such a restructure, this report is given.

FILE COMPONENT DAMAGED 38

This report is given if an attempt is made to access a component that is not a valid
APL object. This will rarely occur, but may happen as a result of a previous
computer system failure. Components files may be checked using ⎕FCHK. See
Language Reference Guide: File Check and Repair.

Chapter 7: Error Messages 259

FILE DAMAGED 23

This report is given if a component file becomes damaged. This rarely occurs but
may result from a computer system failure. Components files may be checked using
⎕FCHK. See Language Reference Guide: File Check and Repair.

FILE FULL 21

This report is given if the file operation would cause the file to exceed its file size
limit.

FILE INDEX ERROR 20

This report is given when an attempt is made to reference a non-existent
component.

Example

⎕FSIZE 1
1 21 16578 4294967295

⎕FREAD 1 34
FILE INDEX ERROR

⎕FREAD 1 34
^
⎕FDROP 1 50

FILE INDEX ERROR
⎕FDROP 1 50
^

FILE NAME ERROR 22

This report is given if:

l the user attempts to ⎕FCREATE using the name of an existing file.
l the user attempts to ⎕FTIE or ⎕FSTIE a non-existent file, or a file that is
not a component file.

l the user attempts to ⎕FERASE a component file or ⎕NERASE a native file
with a name other than the EXACT name that was used when the file was
tied.

Chapter 7: Error Messages 260

FILE NAME QUOTA USED UP 32

This report is given when the user attempts to execute a file system command that
would result in the User's File Name Quota (see Dyalog Programming Reference
Guide: Component Files) being exceeded.

This can occur with ⎕FCREATE, ⎕FTIE, ⎕FSTIE or ⎕FRENAME .

FILE SYSTEM ERROR 26

This report is given if an input/output (I/O) error occurs when reading from or
writing to the host file system. Contact your System Administrator.

If this occurs when the file is being written it may become damaged; it is therefore
advisable to check the integrity of the file using ⎕FCHK once the source of the I/O
errors has been corrected. See Language Reference Guide: File Check and Repair.

FILE SYSTEM NO SPACE 34

This report is given if the user attempts a file operation that cannot be completed
because there is insufficient disk space.

FILE SYSTEM NOT AVAILABLE 28

This error is generated if the operation system generates an unexpected error when
attempting to get a lock on a component file. See Dyalog Programming Reference
Guide: Component Files for details.

This error has been seen most frequently in Windows environments which have
opportunistic locks (aka oplocks) enabled, either on the server that is running
Dyalog APL, or on a server which has access to the same shared drives, or the disk
array which contains the shared drives. In this scenario this error is not seen
consistently, but rather is interspersed with other file-related errors. Oplocks should
be disabled in environments where shared component files are used.

FILE SYSTEM TIES USED UP 30

This error is generated when the maximum number of file ties for this APL instance
has been reached. See Dyalog Programming Reference Guide: Component Files
for details.

Chapter 7: Error Messages 261

FILE TIE ERROR 18

This report is given when the argument to a file system function contains a file tie
number used as if it were tied when it is not or as if it were available when it is
already tied. It also occurs if the argument to ⎕FHOLD contains the names of non-
existent external variables. It does not indicate that there is a problem with the
underlying operating system's locking mechanism.

Examples

⎕FNAMES,⎕FNUMS
SALES 1
COSTS 2
PROFIT 3

X ⎕FAPPEND 4
FILE TIE ERROR

X ⎕FAPPEND 4
^
'NEWSALES' ⎕FCREATE 2

FILE TIE ERROR
'NEWSALES' ⎕FCREATE 2
^

'EXTVFILE' ⎕XT'BIGMAT'
⎕FHOLD 'BIGMAT'

FILE TIE ERROR
⎕FHOLD 'BIGMAT'
^
⎕FHOLD⊂'BIGMAT'

FILE TIED 24

This report is given if the user attempts to tie a file that is exclusively tied by
another task, or attempts to exclusively tie a file that is already share-tied by
another task.

FILE TIED REMOTELY 25

This report is given if the user attempts to tie a file that is exclusively tied by
another task, or attempts to exclusively tie a file that is already share-tied by
another task; and that task is running on other than the user's processor.

Chapter 7: Error Messages 262

FILE TIE QUOTA USED UP 31

This error is generated if an attempt is made to ⎕FTIE, ⎕FSTIE or ⎕FCREATE a
file when the user already has the maximum number of files tied. (See Dyalog
Programming Reference Guide:Component Files)

FORMAT ERROR 7

This report is given when the format specification in the left argument of system
function ⎕FMT is ill-formed.

Example

'A1,1X,I5'⎕FMT CODE NUMBER
FORMAT ERROR

'A1,1X,I5'⎕FMT CODE NUMBER
^

(The correct specification should be 'A1,X1,I5' .)

HOLD ERROR 12

This report is given when an attempt is made to save a workspace using the system
function ⎕SAVE if any external arrays or component files are currently held (as a
result of a prior use of the system function ⎕FHOLD).

Example

∇HOLD∆SAVE
[1] ⎕FHOLD 1
[2] ⎕SAVE 'TEST'

∇

'FILE' ⎕FSTIE 1

HOLD∆SAVE
HOLD ERROR
HOLD∆SAVE[2] ⎕SAVE'TEST'

^

Chapter 7: Error Messages 263

incorrect command

This report is given when an unrecognised system command is entered.

Example

)CLERA
incorrect command

INDEX ERROR 3

This report is given when either:

l The value of an index, whilst being within comparison tolerance of an
integer, is outside the range of values defined by the index vector along an
axis of the array being indexed. The permitted range is dependent on the
value of ⎕IO.

l The value specified for an axis, whilst being within comparison tolerance of
an integer for a derived function requiring an integer axis value or a non-
integer for a derived function requiring a non-integer, is outside the range of
values compatible with the rank(s) of the array argument(s) of the derived
function. Axis is dependent on the value of ⎕IO.

Examples

A
1 2 3
4 5 6

A[1;4]
INDEX ERROR

A[1;4]
^

↑ [2]'ABC' 'DEF'
INDEX ERROR

↑ [2]'ABC' 'DEF'
^

Chapter 7: Error Messages 264

INTERNAL ERROR 99

INTERNAL ERROR indicates a severe system error from which Dyalog APL has
recovered.

Should you encounter INTERNAL ERROR, Dyalog strongly recommends that you
save your work(space), and report the issue.

INTERRUPT 1003

This report is given when execution is suspended by entering a hard interrupt. A
hard interrupt causes execution to suspend as soon as possible without leaving the
environment in a damaged state.

Example

1 1 2 ⍉(2 100⍴⍳200)∘.|?1000⍴200

(Hard interrupt)

INTERRUPT
1 1 2 ⍉(2 100⍴⍳200)∘.|?1000⍴200

^

is name

This report is given in response to the system command)WSID when used without
a parameter. name is the name of the active workspace including directory
references given when loaded or named. If the workspace has not been named, the
system reports is CLEAR WS.

Example

)WSID
is WS/UTILITY

Chapter 7: Error Messages 265

LENGTH ERROR 5

This report is given when the shape of the arguments of a function do not conform,
but the ranks do conform.

Example

2 3+4 5 6
LENGTH ERROR

2 3+4 5 6
^

LIMIT ERROR 10

This report is given when a system limit is exceeded. System limits are installation
dependent.

Example

(16⍴1)⍴1
LIMIT ERROR

(16⍴1)⍴1
^

NONCE ERROR 16

This report is given when a system function or piece of syntax is not currently
implemented but is reserved for future use.

Chapter 7: Error Messages 266

NO PIPES 72

This message applies to the UNIX environment ONLY.

This message is given when the limit on the number of pipes communicating
between tasks is exceeded. An installation-set quota is assigned for each task. An
associated task may require more than one pipe. The message occurs on
attempting to exceed the account's quota when either:

l An APL session is started
l A non-APL task is started by the system function ⎕SH
l An external variable is used.

It is necessary to release pipes by terminating sufficient tasks before proceeding
with the required activity. In practice, the error is most likely to occur when using
the system function ⎕SH.

Examples

'via' ⎕SH 'via'
NO PIPES

'via' ⎕SH 'via'
^

'EXT/ARRAY' ⎕XT 'EXVAR'
NO PIPES

'EXT/ARRAY' ⎕XT 'EXVAR'
^

name is not a ws

This report is given when the name specified as the parameter of the system
commands)LOAD,)COPY or)PCOPY is a reference to an existing file or directory
that is not identified as a workspace.

This will also occur if an attempt is made to)LOAD a workspace that was
)SAVE’d using a later version of Dyalog APL.

Example

)LOAD EXT\ARRAY
EXT\ARRAY is not a ws

Chapter 7: Error Messages 267

Name already exists

This report is given when an)NS command is issued with a name which is already
in use for a workspace object other than a namespace.

Namespace does not exist

This report is given when a)CS command is issued with a name which is not the
name of a global namespace.

not copied name

This report is given for each object named or implied in the parameter list of the
system command)PCOPY which was not copied because of an existing global
referent to that name in the active workspace.

Example

)PCOPY WS/UTILITY A FOO Z
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not copied Z

not found name

This report is given when either:

l An object named in the parameter list of the system command)ERASE is
not erased because it was not found or it is not eligible to be erased.

l An object named in the parameter list (or implied list) of names to be
copied from a saved workspace for the system commands)COPY or
)PCOPY is not copied because it was not found in the saved workspace.

Examples

)ERASE ⎕IO
not found ⎕IO

)COPY WS/UTILITY UND
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not found UND

Chapter 7: Error Messages 268

not saved this ws is name

This report is given in the following situations:

l When the system command)SAVE is used without a name, and the
workspace is not named. In this case the system reports not saved
this ws is CLEAR WS.

l When the system command)SAVE is used with a name, and that name is
not the current name of the workspace, but is the name of an existing file.

In neither case is the workspace renamed.

Examples

)CLEAR
)SAVE

not saved this ws is CLEAR WS

)WSID JOHND
)SAVE
)WSID ANDYS
)SAVE JOHND

not saved this ws is ANDYS

PROCESSOR TABLE FULL 76

This report can only occur in a UNIX environment.

This report is given when the limit on the number of processes (tasks) that the
computer system can support would be exceeded. The limit is installation
dependent. The report is given when an attempt is made to initiate a further
process, occurring when an APL session is started.

It is necessary to wait until active processes are completed before the required task
may proceed. If the condition should occur frequently, the solution is to increase
the limit on the number of processes for the computer system.

Example

'prefect' ⎕SH 'prefect'
PROCESSOR TABLE FULL

'prefect' ⎕SH 'prefect'
^

Chapter 7: Error Messages 269

RANK ERROR 4

This report is given when the rank of an argument or operand does not conform to
the requirements of the function or operator, or the ranks of the arguments of a
function do not conform.

Example

2 3 + 2 2⍴10 11 12 13
RANK ERROR

2 3 + 2 2⍴10 11 12 13
^

RESIZE 1007

This report is given when the user resizes the ⎕SM window. It is only applicable
to Dyalog APL/X and Dyalog APL/W.

name saved date time

This report is given when a workspace is saved, loaded or copied.

date/time is the date and time at which the workspace was most recently saved.

Examples

)LOAD WS/UTILITY
WS/UTILITY saved Fri Sep 11 10:34:35 1998

)COPY SPACES GEOFF JOHND VINCE
./SPACES saved Wed Sep 30 16:12:56 1998

Chapter 7: Error Messages 270

SYNTAX ERROR 2

This report is given when a line of characters does not constitute a meaningful
statement. This condition occurs when either:

l An illegal symbol is found in an expression.
l Brackets, parentheses or quotes in an expression are not matched.
l Parentheses in an expression are not matched.
l Quotes in an expression are not matched.
l A value is assigned to a function, label, constant or system constant.
l A strictly dyadic function (or derived function) is used monadically.
l A monadic function (or derived function) is used dyadically.
l A monadic or dyadic function (or derived function) is used without any
arguments.

l The operand of an operator is not an array when an array is required.
l The operand of an operator is not a function (or derived function) when a
function is required.

l The operand of an operator is a function (or derived function) with incorrect
valency.

l A dyadic operator is used with only a single operand.
l An operator is used without any operands.

Examples

A>10)/A
SYNTAX ERROR

A>10)/A
^

⊤2 4 8
SYNTAX ERROR

⊤2 4 8
^

A.+1 2 3
SYNTAX ERROR

A.+1 2 3
^

Chapter 7: Error Messages 271

sys error number

This report is given when an internal error occurs in Dyalog APL.

Under UNIX it may be necessary to enter a hard interrupt to obtain the UNIX
command prompt, or even to kill your processes from another screen. Under
WINDOWS it may be necessary to reboot your PC.

If this error occurs, please submit a fault report to your Dyalog APL distributor.

TIMEOUT 1006

This report is given when the time limit specified by the system variable ⎕RTL is
exceeded while awaiting input through character input (⍞) or ⎕SR.

It is usual for this error to be trapped.

Example

⎕RTL←5 ⋄ ⍞←'RESPOND WITHIN 5 SECONDS: ' ⋄ R←⍞
RESPOND WITHIN 5 SECONDS:
TIMEOUT

⎕RTL←5 ⋄ ⍞←'RESPOND WITHIN 5 SECONDS: ' ⋄ R←⍞
^

TRANSLATION ERROR 92

This report is given when the system cannot convert a character from Unicode to
an Atomic Vector index or vice versa. Conversion is controlled by the value of
⎕AVU. Note that this error can occur when you reference a variable whose value
has been obtained by reading data from a TCPSocket or by calling an external
function. This is because in these cases the conversion to/from ⎕AV is deferred
until the value is used.

TRAP ERROR 84

This report is given when a workspace full condition occurs whilst searching for a
definition set for the system variable ⎕TRAP after a trappable error has occurred. It
does not occur when an expression in a ⎕TRAP definition is being executed.

Chapter 7: Error Messages 272

too many names

This report is given by the function editor when the number of distinct names
(other than distinguished names beginning with the symbol ⎕) referenced in a
defined function exceeds the system limit of 4096.

VALUE ERROR 6

This report is given when either:

l There is no active definition for a name encountered in an expression.
l A function does not return a result in a context where a result is required.

Examples

X
VALUE ERROR

X
^

∇ HELLO
[1] 'HI THERE'
[2] ∇

2+HELLO
HI THERE
VALUE ERROR

2+HELLO
^

warning duplicate label

This warning message is reported on closing definition mode when one or more
labels are duplicated in the body of the defined function. This does not prevent
the definition of the function in the active workspace. The value of a duplicated
label is the lowest of the line-numbers in which the labels occur.

Chapter 7: Error Messages 273

warning duplicate name

This warning message is reported on closing definition mode when one or more
names are duplicated in the header line of the function. This may be perfectly
valid. Definition of the function in the active workspace is not prevented. The
order in which values are associated with names in the header line is described in
Programming Reference Guide: Defined Functions & Operators.

warning pendent operation

This report is given on opening and closing definition mode when attempting to
edit a pendant function or operator.

Example

[0] ∇FOO
[1] GOO
[2] ∇

[0] ∇GOO
[1] ∘
[2] ∇

FOO
SYNTAX ERROR
GOO[1] ∘

^

∇FOO
warning pendent operation
[0] ∇FOO
[1] GOO
[2] ∇
warning pendent operation

warning label name present

This warning message is reported on closing definition mode when one or more
label names also occur in the header line of the function. This does not prevent
definition of the function in the active workspace. The order in which values are
associated with names is described in Programming Reference Guide: Defined
Functions & Operators.

Chapter 7: Error Messages 274

warning unmatched brackets

This report is given after adding or editing a function line in definition mode when
it is found that there is not an opening bracket to match a closing bracket, or vice
versa, in an expression. This is a warning message only. The function line will be
accepted even though syntactically incorrect.

Example

[3] A[;B[;2]←0
warning unmatched brackets
[4]

warning unmatched parentheses

This report is given after adding or editing a function line in definition mode when
it is found that there is not an opening parenthesis to match a closing parenthesis,
or vice versa, in an expression. This is a warning message only. The function line
will be accepted even though syntactically incorrect.

Example

[4] X←(E>2)^E<10)⌿A
warning unmatched parentheses
[5]

was name

This report is given when the system command)WSID is used with a parameter
specifying the name of a workspace. The message identifies the former name of
the workspace. If the workspace was not named, the given report is was CLEAR
WS.

Example

)WSID TEMP
was UTILITY

Chapter 7: Error Messages 275

WS FULL 1

This report is given when there is insufficient workspace in which to perform an
operation. Workspace available is identified by the system constant ⎕WA.

The maximum workspace size allowed is defined by the environment variable
MAXWS. See Installation & Configuration Guide: maxws parameter for details.

Example

⎕WA⍴1.2
WS FULL

⎕WA⍴1.2
^

ws not found

This report is given when a workspace named by the system commands)LOAD,
)COPY or)PCOPY does not exist as a file, or when the user does not have read
access authorisation for the file.

Examples

)LOAD NOWS
ws not found

)COPY NOWS A FOO X
ws not found

ws too large

This report is given when:

l the user attempts to)LOAD a workspace that needs a greater work area than
the maximum that the user is currently permitted.

l the user attempts to)COPY or)PCOPY from a workspace that would
require a greater work area than the user is currently permitted if the
workspace were to be loaded.

The maximum work area permitted is set using the environment variable MAXWS.

Operating System Error Messages
There follows a numerically sorted list of error messages emanating from a typical
operating system and reported through Dyalog APL.

Chapter 7: Error Messages 276

FILE ERROR 1 Not owner 101

This report is given when an attempt is made to modify a file in a way which is
forbidden except to the owner or super-user, or in some instances only to a super-
user.

FILE ERROR 2 No such file

This report is given when a file (which should exist) does not exist, or when a
directory in a path name does not exist.

FILE ERROR 5 I O error 105

This report is given when a physical I/O error occurred whilst reading from or
writing to a device, indicating a hardware fault on the device being accessed.

FILE ERROR 6 No such device

This report is given when a device does not exist or the device is addressed
beyond its limits. Examples are a tape which has not been mounted or a tape
which is being accessed beyond the end of the tape.

FILE ERROR 13 Permission denied 113

This report is given when an attempt is made to access a file in a way forbidden to
the account.

FILE ERROR 20 Not a directory 120

This report is given when the request assumes that a directory name is required but
the name specifies a file or is not a legal name.

FILE ERROR 21 Is a directory 121

This report is given when an attempt is made to write into a directory.

Chapter 7: Error Messages 277

FILE ERROR 23 File table overflow 123

This report is given when the system limit on the number of open files is full and a
request is made to open another file. It is necessary to wait until the number of
open files is reduced. If this error occurs frequently, the system limit should be
increased.

FILE ERROR 24 Too many open

This report is given when the task limit on the number of open files is exceeded.
It may occur when an APL session is started or when a shell command is issued to
start an external process through the system command ⎕SH. It is necessary to
reduce the number of open files. It may be necessary to increase the limit on the
number of open files to overcome the problem.

FILE ERROR 26 Text file busy 126

This report is given when an attempt is made to write a file which is a load
module currently in use. This situation could occur on assigning a value to an
external variable whose associated external file name conflicts with an existing
load module's name.

FILE ERROR 27 File too large 127

This report is given when a write to a file would cause the system limit on file size
to be exceeded.

FILE ERROR 28 No space left

This report is given when a write to a file would exceed the capacity of the device
containing the file.

FILE ERROR 30 Read only file

This report is given when an attempt is made to write to a device which can only
be read from. This would occur with a write-protected tape.

Chapter 7: Error Messages 278

System Errors
Introduction
Dyalog APL will generate a system error and (normally) terminate in one of two
circumstances:

l As a result of the failure of a workspace integrity check
l As a result of a System Exception

On Windows, if the DYALOG_NOPOPUPS parameter is 0 (the default), it will
display the System Error dialog box (see System Error Dialog Box on page 281).
This is suppressed if DYALOG_NOPOPUPS is 1.

aplcore file
When a system error occurs, APL normally saves an aplcore file which may be
sent to Dyalog for diagnosis. The name and location of the aplcore file may be
specified by the AplCoreName parameter. If this parameter is not specified, the
aplcore file is named aplcore and is saved in the current working directory.

Normally a new aplcore will replace a file of the same name. However, if
AplCoreName contains an asterisk (*), the system will create a new file, replacing
the asterisk with a number incremented from the largest numbered file present.

The number of aplcore files retained by the system is specified by the
MaxAplCores parameter. IfMaxAplCores is 0, the system will not save an
aplcore. However, under Windows, if DYALOG_NOPOPUPS is 0, and the user
checks the Create an aplcore file checkbox when the System Error dialog box is
displayed, an aplcore will be saved regardless of the value ofMaxAplCores. See
System Error Dialog Box on page 281.

Be aware that if your application contains any secure data, this data may be
present in an aplcore file, and it may be appropriate to set both MaxAplCores and
DYALOG_NOPOPUPS to 0 to prevent such data being saved on disk.

For further information concerning the parameters AplCoreName, DYALOG_
NOPOPUPS and MaxAplCores, see Installation and Configuration Guide.

Information that may prove useful in debugging the problem, including (where
possible) the SI stack at the point where the aplcore was generated, is by default
written to the end of aplcore files; the section begins with the string

'=================== Interesting Information'

Under UNIX, this interesting information section can be extracted from the aplcore
as follows:

sed -n '/======== Interesting Information/,$p' aplcore

Chapter 7: Error Messages 279

To prevent this information from being written to the aplcore file, the APL_
TextInAplCore parameter should be set to 0.

Workspace Integrity
When you)SAVE your workspace, Dyalog APL first performs a workspace
integrity check. If it detects any discrepancy or violation in the internal structure of
your workspace, APL does not overwrite your existing workspace on disk. Instead,
it displays the System Error dialog box and saves the workspace, together with
diagnostic information, in an aplcore file before terminating.

A System Error code is displayed in the dialog box and should be reported to
Dyalog for diagnosis. This information also appears in the Interesting Information
section of the aplcore file.

Note that the internal error that caused the discrepancy could have occurred at any
time prior to the execution of)SAVE and it may not be possible for Dyalog to
identify the cause from this aplcore file.

If APL is started in debug mode with the –Dc, -Dw or –DW flags, the Workspace
Integrity check is performed more frequently, and it is more likely that the
resulting aplcore file will contain information that will allow the problem to be
identified and corrected. It is also possible to enable or alter the debugging level
from within APL using the SetDFlags method; Dyalog support will direct the use
of this feature when necessary.

System Exceptions
Non-specific System Errors are the result of Operating System exceptions that can
occur due to a fault in Dyalog APL itself, an error in a Windows or other DLL, or
even as a result of a hardware fault. The following system exceptions are separately
identified.

Chapter 7: Error Messages 280

Code Description Suggested Action

900 A Paging Fault has
occurred

As the most likely cause is a temporary
network fault, recommended course of
action is to restart your program.

990
&
991

An exception has occurred
in the Development or Run-
Time DLL.

995
An exception has occurred
in a DLL function called
via ⎕NA

Carefully check your ⎕NA statement and
the arguments that you have passed to
the DLL function

996
An exception has occurred
in a DLL function called
via a threaded ⎕NA call

As above

997
An exception has occurred
while processing an
incoming OLE call

999
An exception has been
caused by Dyalog APL or
by the Operating System

Recovering Data from aplcore files
Objects may often (but not always) be recovered from aplcore using)COPY or
⎕CY. Note that if the aplcore contains a workspace with more than one instance of
the same name on the stack, ⎕CY copies the most local object whereas
)COPY copies the global one.

Be aware that in many cases an attempt to)COPY from or)LOAD an aplcore is
likely to result in a further syserror; this may result in the original aplcore being
overwritten, thus losing the contents of that file. It is therefore worth while taking
a copy of the aplcore beforeattempting to)COPY from it. Attempting to copy
specific items is more likely to be successful than copying the entire workspace
from the aplcore.

Note that in previous versions under Windows because (by default) the aplcore
file has no extension, it was necessary to explicitly add a dot, or APL would
attempt to find the non-existent file aplcore.dws. This is no longer true in
version 14.1 onwards.

Chapter 7: Error Messages 281

Reporting Errors to Dyalog
If APL crashes and saves an aplcore file, please email the following information to
support@dyalog.com:

1. a brief description of the circumstances surrounding the error
2. details of your version of Dyalog APL: the full version number, whether it

is Unicode or Classic Edition, and the BuildID. This information appears in
the Help->About box; the Copy button copies this information into the
clipboard, from where it can be pasted into an email etc.

3. a compressed form of the aplcore file itself

If the problem is reproducible, i.e. can be easily repeated, please also send the
appropriate description, workspace, and other files required to do so.

System Error Dialog Box
The System Error Dialog illustrated below was produced by deliberately inducing
a system exception in the DLL function memcpy(). The functions used were:

∇ foo
[1] goo

∇
∇ goo

[1] hoo
∇
∇ hoo

[1] crash
∇

∇ crash
[1] ⎕NA'dyalog64|MEMCPY u u u'
[2] MEMCPY 255 255 255

∇

Note: Under a 32-bit interpreter the ⎕NA call should refer to dyalog32.

Chapter 7: Error Messages 282

Chapter 7: Error Messages 283

Options
Item Description

Create a
process
dump file

Dumps a complete core image, see below.

Create
Trappable
Error

If you check this box (only enabled on System Error codes 995
and 996), APL will not terminate but will instead generate an
error 91 (EXTERNAL DLL EXCEPTION) when you press
Dismiss.

Create an
aplcore file If this box is checked, an aplcore file will be created.

Pass
exception
on to
operating
system

If this box is checked, the exception will be passed on to your
current debugging tool (e.g. Visual Studio). See Installation &
Configuration Guide: PassExceptionsToOpSys.

Copy to
clipboard

Copies the contents of the APL stack trace window to the
Clipboard.

Create a process dump file
Under Windows the Create a process dump file option creates a user-mode process
dump file , also known as a minidump file, called dyalog.dmp in the current
directory. This file allows post-mortem debugging of a crash in the interpreter or a
loaded DLL. It contains much more debug information than a normal aplcore (and
is much larger than an aplcore) and can be sent to Dyalog Limited (zip it first
please). Alternatively the file can be loaded into Visual Studio .NET to do your
own debugging.

Debugging your own DLLs
If you are using Visual Studio, the following procedure should be used to debug
your own DLLs when an appropriate Dyalog APL System Error occurs.

Ensure that the Pass Exception box is checked, then click on Dismiss to close the
System Error dialog box.

The system exception dialog box appears. Click on Debug to start the process in
the Visual Studio debugger.

After debugging, the System Exception dialog box appears again. Click on Don't
send to terminate Windows' exception handling.

Chapter 7: Error Messages 284

ErrorOnExternalException Parameter
This parameter allows you to prevent APL from taking the actions described above
when an exception caused by an external DLL occurs. The following example
illustrates what happens when the functions above are run, but with the
ErrorOnExternalException parameter set to 1.

 ⎕←2 ⎕NQ'.' 'GetEnvironment' 'ErrorOnExternalException'
1

foo
EXTERNAL DLL EXCEPTION
crash[2] MEMCPY 255 255 255

^
⎕EN

91
)SI

crash[2]*
hoo[1]
goo[1]
foo[1]

Note: Dyalog recommends that enabling ErrorOnExternalException should only
be done while developing or debugging an application; ignoring such errors may
result in corruption in the workspace which could result to unexpected errors later
in the application.

What should I do if Dyalog hangs?
If Dyalog for Windows hangs, you should generate a process dump file and send it
to Dyalog Support, along with your Build ID.

To do this:

1. Start Task Manager (as a user who has administrative privileges)
2. Go to the Processes tab
3. Right click on the dyalog.exe process and choose Create Dump File.

Windows will create a process dump file in C:\Users\<your name
here>\AppData\Local\Temp\dyalog.DMP

4. Compress this file and send it to Dyalog. If it is less than 10 Mb in size,
send it to Dyalog Support as an email attachment. If it is more than 10 Mb,
upload it via the MyDyalog/My Account page or contact Dyalog support to
request an account on our FTP server.

Symbolic Index 285

Symbolic Index

Note that the references in this table refer to
entries in the Language Reference Guide:
Contents.

+
See add,
conjugate,
plus

-
See minus,
negate,
subtract

×
See multiply,
signum, times

÷
See divide,
reciprocal

⌹
See matrix
divide, matrix
inverse

|
See
magnitude,
residue

⌈
See ceiling,
maximum

⌊
See floor,
minimum

*
See
exponential,
power

⍟

See
logarithm,
natural
logarithm

< See less
> See greater

≤
See less or
equal

≥
See greater or
equal

= See equal
≠ See not equal

≡
See depth,
match

≢
See not
match, tally

~
See
excluding,
not, without

^
See and, caret
pointer

∨ See or
⍲ See nand
⍱ See nor

∪
See union,
unique

∩
See
intersection

⊂

See enclose,
partition,
partitioned
enclose

⊆
See nest,
partition

⊃
See disclose,
mix, pick

? See deal, roll

!
See binomial,
factorial

⍋ See grade up

⍒
See grade
down

⍎ See execute
⍕ See format
⊥ See decode
⊤ See encode

Symbolic Index 286

⊣ See same, left

⊢
See same,
right

○
See circular,
pi times

⍉ See transpose

⌽
See reverse,
rotate

⊖
See reverse
first, rotate
first

,
See catenate,
laminate,
ravel

⍪
See catenate
first, table

⍳
See index
generator,
index of

⍸
See where,
interval index

⍴
See reshape,
shape

∊
See enlist,
membership,
type

⍷ See find

↑
See disclose,
mix, take

↓ See drop, split

←
See
assignment

→
See abort,
branch

.

See name
separator,
decimal point,
inner product

∘.
See outer
product

⍤ See rank, atop

⍥ See over

∘
See beside,
bind

,
See compress,
replicate,
reduce

⌿
See replicate
first, reduce
first

\
See expand,
scan

⍀
See expand
first, scan first

¨ See each

⍨
See commute
and constant

& See spawn

⍣
See power
operator

⍠ See variant
⌸ See key
@ See at
⌺ See stencil
⌶ See i-beam
⍬ See zilde

¯
See negative
sign

_
See underbar
character

∆
See delta
character

⍙
See delta-
underbar
character

'' See quotes

⌷
See index,
axis

[]
See indexing,
axis

Symbolic Index 287

()
See
parentheses

{} See braces

⍺
See left
argument

⍺⍺
See left
operand

⍵
See right
argument

⍵⍵
See right
operand

#
See Root
object

##
See parent
object

⋄
See statement
separator

⍝
See comment
symbol

∇
See function
self, del editor

∇∇
See operator
self

;

See name
separator,
array
separator

:
See label
colon

:AndIf
See and if
condition

:Access
See access
statement

:Case
See case
qualifier

:CaseList
See caselist
qualifier

:Class
See class
statement

:Continue
See continue
branch

:Else See else

qualifier

:ElseIf
See else-if
condition

:End
See general
end control

:EndClass
See endclass
statement

:EndFor
See end-for
control

:EndHold
See end-hold
control

:EndIf
See end-if
control

:EndNamespace
See
endnamespace

:EndProperty
See
endproperty
statement

:EndRepeat
See end-
repeat control

:EndSelect
See end-select
control

:EndTrap
See end-trap
control

:EndWhile
See end-while
control

:EndWith
See end-with
control

:Field
See field
statement

:For
See for
statement

:GoTo
See go-to
branch

:Hold
See hold
statement

:Include
See include
statement

:If
See if
statement

Symbolic Index 288

:Implements
See
implements
statement

:In See in control

:InEach
See ineach
control

:Interface
See interface
statement

:Leave
See leave
branch

:Namespace
See
namespace
statement

:OrIf
See or-if
condition

:Property
See property
statement

:Repeat
See repeat
statement

:Require
See require
statement

:Return
See return
branch

:Section
See section
statement

:Select
See select
statement

:Trap
See trap
statement

:Until
See until
condition

:While
See while
statement

:With
See with
statement

⍞
See quote-
quad,
character I\O

⎕
See quad,
evaluated I\O

⎕Á
See
underscored

alphabet
⎕A See alphabet

⎕AI
See account
information

⎕AN
See account
name

⎕ARBIN
See arbitrary
input

⎕ARBOUT
See arbitrary
output

⎕AT See attributes

⎕AV
See atomic
vector

⎕AVU
See atomic
vector -
unicode

⎕BASE See base class

⎕C
See case
convert

⎕CLASS See class

⎕CLEAR
See clear
workspace

⎕CMD

See execute
Windows
command,
start AP

⎕CR
See canonical
representation

⎕CS
See change
space

⎕CSV
See comma
separated
values

⎕CT
See
comparison
tolerance

⎕CY
See copy
workspace

⎕D See digits

Symbolic Index 289

⎕DCT
See decimal
comparison
tolerance

⎕DF
See display
form

⎕DIV
See division
method

⎕DL See delay

⎕DM
See
diagnostic
message

⎕DQ
See dequeue
events

⎕DR
See data
representation

⎕ED
See edit
object

⎕EM
See event
message

⎕EN
See event
number

⎕EX
See expunge
object

⎕EXCEPTION See exception

⎕EXPORT
See export
object

⎕FAPPEND
See file
append
component

⎕FAVAIL
See file
available

⎕FCHK
See file check
and repair

⎕FCOPY See file copy
⎕FCREATE See file create

⎕FDROP
See file drop
component

⎕FERASE See file erase
⎕FHOLD See file hold

⎕FHIST
See file
history

⎕FIX See fix script

⎕FLIB
See file
library

⎕FMT See format
⎕FNAMES See file names

⎕FNUMS
See file
numbers

⎕FPROPS
See file
properties

⎕FR
See floating-
point
representation

⎕FRDAC
See file read
access matrix

⎕FRDCI
See file read
component
information

⎕FREAD
See file read
component

⎕FRENAME
See file
rename

⎕FREPLACE
See file
replace
component

⎕FRESIZE See file resize
⎕FSIZE See file size

⎕FSTAC
See file set
access matrix

⎕FSTIE
See file share
tie

⎕FTIE See file tie
⎕FUNTIE See file untie

⎕FX
See fix
definition

⎕INSTANCES See instances

⎕IO
See index
origin

⎕JSON
See json
convert

⎕KL See key label

Symbolic Index 290

⎕LC
See line
counter

⎕LOAD
See load
workspace

⎕LOCK
See lock
definition

⎕LX
See latent
expression

⎕MAP See map file

⎕MKDIR
See make
directory

⎕ML
See migration
level

⎕MONITOR See monitor

⎕NA
See name
association

⎕NAPPEND
See native file
append

⎕NC
See name
class

⎕NCOPY
See native file
copy

⎕NCREATE
See native file
create

⎕NDELETE
See native file
delete

⎕NERASE
See native file
erase

⎕NEW
See new
instance

⎕NEXISTS
See native file
exists

⎕NGET
See read text
file

⎕NINFO
See native file
information

⎕NL See name list

⎕NLOCK
See native file
lock

⎕NMOVE
See native file
move

⎕NNAMES
See native file
names

⎕NNUMS
See native file
numbers

⎕NPARTS See file parts

⎕NPUT
See write text
file

⎕NQ
See enqueue
event

⎕NR
See nested
representation

⎕NREAD
See native file
read

⎕NRENAME
See native file
rename

⎕NREPLACE
See native file
replace

⎕NRESIZE
See native file
resize

⎕NS
See
namespace

⎕NSI
See
namespace
indicator

⎕NSIZE
See native file
size

⎕NTIE
See native file
tie

⎕NULL See null item

⎕NUNTIE
See native file
untie

⎕NXLATE
See native file
translate

⎕OFF
See sign off
APL

⎕OPT See variant

⎕OR
See object
representation

⎕PATH
See search
path

Symbolic Index 291

⎕PFKEY
See program
function key

⎕PP
See print
precision

⎕PROFILE
See profile
application

⎕PW
See print
width

⎕R See replace

⎕REFS
See cross
references

⎕RL
See random
link

⎕RSI
See space
indicator

⎕RTL
See response
time limit

⎕S See search

⎕SAVE
See save
workspace

⎕SD
See screen
dimensions

⎕SE
See session
namespace

⎕SH

See execute
shell
command,
start AP

⎕SHADOW
See shadow
name

⎕SI
See state
indicator

⎕SIGNAL
See signal
event

⎕SIZE
See size of
object

⎕SM
See screen
map

⎕SR
See screen
read

⎕SRC See source

⎕STACK
See state
indicator
stack

⎕STATE
See state of
object

⎕STOP
See stop
control

⎕SVC
See shared
variable
control

⎕SVO
See shared
variable offer

⎕SVQ
See shared
variable query

⎕SVR
See shared
variable
retract

⎕SVS
See shared
variable state

⎕TC
See terminal
control

⎕TCNUMS
See thread
child numbers

⎕TGET
See get
tokens

⎕THIS See this space

⎕TID
See thread
identity

⎕TKILL
See thread
kill

⎕TNAME
See thread
name

⎕TNUMS
See thread
numbers

⎕TPOOL
See token
pool

⎕TPUT
See put
tokens

⎕TRACE
See trace
control

⎕TRAP See trap event

Symbolic Index 292

⎕TREQ
See token
requests

⎕TS
See time
stamp

⎕TSYNC
See threads
synchronise

⎕UCS
See unicode
convert

⎕USING
See using
path

⎕VFI
See verify and
fix input

⎕VR
See vector
representation

⎕WA
See
workspace
available

⎕WC
See window
create object

⎕WG
See window
get property

⎕WN
See window
child names

⎕WS
See window
set property

⎕WSID
See
workspace
identification

⎕WX
See window
expose names

⎕XML
See xml
convert

⎕XSI
See extended
state indicator

⎕XT
See external
variable

)CLASSES
See list
classes

)CLEAR
See clear
workspace

)CMD See command
)CONTINUE See continue

off

)COPY
See copy
workspace

)CS
See change
space

)DROP
See drop
workspace

)ED
See edit
object

)ERASE
See erase
object

)EVENTS See list events

)FNS
See list
functions

)HOLDS
See held
tokens

)LIB
See
workspace
library

)LOAD
See load
workspace

)METHODS
See list
methods

)NS
See
namespace

)OBJECTS
See list
objects

)OBS
See list
objects

)OFF
See sign off
APL

)OPS
See list
operators

)PCOPY
See protected
copy

)PROPS
See list
properties

)RESET
See reset state
indicator

)SAVE
See save
workspace

Symbolic Index 293

)SH
See shell
command

)SI
See state
indicator

)SINL
See state
indicator
name

)TID
See thread
identity

)VARS
See global
defined
variables

)WSID
See
workspace
identity

)XLOAD
See quiet-load
workspace

294 Programming Reference Guide

Index 295

Index

A

access statement 71, 145, 190
Access Statement 185
ambivalent functions 17, 64
and-if condition 75
APL

arrays 3
component files 61
error messages 253
expressions 16
functions 17
line editor 18, 98
operators 19
quotes 5
statements 65

APL files 213
APL_TextInAplCore parameter 279
aplcore 278-279
aplcorename parameter 278
aplnid parameter 215
arguments 63
arguments of functions 17
array expressions 16
arrays 3

boxing user command 12
depth of 3
display of 8
display user command 11
enclosed 5
matrix 3
multi-dimensional 3
of namespace references 51
rank of 3
scalar 3
shape of 3
type of 3
vector 3

assignment
distributed 53

function 18
atomic vector - unicode 271
atop 23
attribute statement 72, 184
auxiliary processors 61

B

bad ws 253
base class 121, 123, 182
base constructor 133
binary integer decimal 41
binding strength 21
body

of function 18
of operator 20

boxing user command 12
braces 18
branch arrow 94
branch statements

branch 94
continue 95
goto 94
leave 94
return 94

C

callback functions run as threads 196
cannot create name 253
case-list qualifier 75
case qualifier clause 85
cells 14
character arrays 5
characters 5
circular functions 36
class statement 182
classes

base class 121, 123, 182
constructors 124-125, 131, 133, 136
defining 122
derived from .NET Type 124
derived from GUI 124
destructor 131, 138
editing 122
fields 140-141, 188
including namespaces 164

Index 296

including script files 180
inheritance 121, 123
instances 121, 124, 138
introduction 121
members 140
methods 140, 145
naming 121
properties 140, 149, 190
script 122
using statement 183

clear ws 253
colon character 67
comments 63, 65
complex numbers 4, 35

circular functions 36
floating-point representation 40

component files 61, 214
access matrix 215
buffering 228
file design 225
internal structure 225
multi-user access 222
user number 215

ComponentFile Class example 156
composition operator

form II 27
form III 27

conditional statements
if (condition) 77
until 81
while 80

constructors
base 133
introduction 125
monadic 136
niladic 129, 135
overloading 126

continue branch statements 95
control qualifiers

case 85
control structures 75

disposable 95
for 82
hold 88
if (condition) 77
repeat 81
select 85
trap 91

while 80
with 87

control words 82
copy incomplete 254
COPY system command 280
curly brackets 18

D

DEADLOCK 254
decimal comparison tolerance 41
decimal numbers 4
decimal point 4
default constructor 129, 131
default property 155
defined functions 63
defined operations 63
defined operators 63
defining function 18
defining operators 20
definition mode 98
defn error 254
del editor 98
delta-underbar character 2
delta character 2
densely packed decimal 41
depth of arrays 3
derived functions 19, 22, 63
destructor 131, 138
dfns 105

default left arguments 107
error guards 110
guards 108
lexical name scope 109
local assignment of 106
multi-line 106, 119
recursion 114
result of 106
tail calls 114, 118

diamond symbol 65
display user command 11
displaying arrays 8

boxing user command 12
display user command 11

displaying assigned functions 18
disposable statement 95
distributed functions 55

Index 297

DOMAIN ERROR 255
dops 105, 113-114
dyadic functions 17
dyadic operations 64
dyadic operators 19
DYALOG_NOPUPS parameter 278
dynamic localisation 46
dynamic name scope 109

E

editing directives 100
else-if condition 75
else qualifier 75
empty vectors 5
enclosed arrays 5
enclosed elements 5
end-for control 76
end-hold control 76
end-if control 76
end-repeat control 76
end-select control 76
end-trap control 76
end-while control 76
end-with control 76
end control 76
endproperty statement 190
endsection statement 95
EOF INTERRUPT 255
error guards 110
error messages 247
error trapping control structures 91
ErrorOnExternalException parameter 284
Euler identity 34
evaluation of namespace references 45
exception 255
expressions 65

array expressions 16
function expressions 16

external functions 61
external variables 60

F

fchk system function 229
FIELD ... ERROR 256
field statement 188

fields 140-141, 188
initialising 142
private 143
public 141
shared 143
trigger 144

file access control 215
FILE ACCESS ERROR 258
FILE ACCESS ERROR ... 258
FILE COMPONENT DAMAGED 258
FILE DAMAGED 259
FILE FULL 259
FILE INDEX ERROR 259
FILE NAME ERROR 259
FILE NAME QUOTA USED UP 260
FILE SYSTEM ERROR 260
FILE SYSTEM NO SPACE 260
FILE SYSTEM NOT AVAILABLE 260
FILE SYSTEM TIES USED UP 260
FILE TIE ERROR 261
FILE TIE QUOTA USED UP 262
FILE TIED 261
FILE TIED REMOTELY 261
fill item 14
fix script 122
floating-point representation 38, 40-42

complex numbers 40
for statements 82
fork 23
FORMAT ERROR 262
FORMAT FILE ACCESS ERROR 257
FORMAT FILE ERROR 257
FULL-SCREEN ERROR 256
function assignment 18
function body 18
function display 18
function header 18
function self-reference 114
function train 22
functions 17

ambivalent 17, 64
arguments of 17
defined 63
derived 63
dfns 105
distributed 55
dyadic 17
external 61

Index 298

left argument 17
model syntax of 64
monadic 17
niladic 17
right argument 17
scope of 17

G

global names 66
global trigger 73, 187, 211
goto branch statements 94
guards 108

H

hash tables 27
header

of function 18
of operator 20

header lines 66
high-priority callback 197
high-priority callback function 91
high minus symbol 4
HOLD ERROR 262
hold statement 91
hold statements 88
home namespace 57

I

idiom 29
idiom list 29
idiom recognition 28
idioms 29
if statements 77
implements statement

constructor 133
destructor 138
method 162
trigger 208

in control word 82
include statement 164
incorrect command 263
INDEX ERROR 263
ineach control word 82, 84

inheritance 121, 123
initialising fields 142
instances 124, 138

empty arrays of 130-131
integer numbers 4
interface statement 181-182
interfaces 162-163, 182
INTERNAL ERROR 264
INTERRUPT 264

K

KEY CODE RANK ERROR 257
KEY CODE TYPE ERROR 257
KEY CODE UNRECOGNISED 257
keyed property 158, 161
KeyPress event 257

L

labels 65-66
lamp symbol 65
leave branch statements 94
left argument of function 17
left operand of operators 19
legal names 2
LENGTH ERROR 265
lexical name scope 109
LIMIT ERROR 265
line editor 98, 100

editing directives 100
line numbers 101

line editor, traditional 18
line labels 65
line numbers 101
literals 5
local names 46, 63, 66, 68
localisation 66, 68
locals lines 68
locking defined operations 70

M

major cells 15
mantissae 4
matrices 3

Index 299

methods 140, 145
instance 146-147
private 145
public 145
shared 146
superseding in the base class 148

monadic functions 17
monadic operations 64
monadic operators 19
multi-dimensional arrays 3

N

name already exists 267
name association 197, 203
name is not a ws 266
name saved date/time 269
name scope rules 198
name separator 63
namelist 69, 126
names

function headers 64
global 66
in function headers 69
legal 2
local 46, 63, 66

Namespace 42
namespace does not exist 267
namespace reference 3, 45, 48
namespace script 175
namespace statement 175, 181
namespaces

array expansion 51
distributed assignment 53
distributed functions 55
including in classes 164
Introduction 42
operators 57
reference syntax 44
serialisation 58
unnamed 49

negative numbers 4
negative sign 4
nested arrays 5
new instance 124
niladic constructor 129, 131, 135
niladic functions 17

niladic operations 64
NO PIPES 266
NONCE ERROR 265
not copied name 267
not found name 267
not saved this ws is name 268
notation

vector 6
numbered

property 155
numbered property 154
numbers 4

complex 4
decimals 4
empty vectors 5
integers 4
mantissae 4
negative 4

numeric arrays 4

O

operands 19, 63
operations

model syntax 64
valence of 64

operators 19
body 20
derived functions 19
dop 113
dop self-reference 114
dops 105
dyadic 19
header 20
in namespaces 57
model syntax of 64
monadic 19
operands 19
scope of 19

oplocks 260
opportunistic locks 260
or-if condition 75
overridable 146, 148, 185
override 148, 185

P

parallel execution 34

Index 300

parent object 44
Penguin Class example 163
PROCESSOR TABLE FULL 268
properties 140, 149

default 155, 190
instance 150-151, 190
keyed 149, 158, 161, 190, 193
numbered 149, 152, 154-155, 190, 192-

193
private 190
properetyget function 152
propertyarguments class 151, 153, 158,

191
propertyget function 192-193
propertyset function 152
propertyshape function 152, 194
public 190
shared 152, 190
simple 149-152, 190, 192-193

property statement 190
propertyarguments class 151, 153, 158, 191
propertyget function 152, 192-193
propertyset function 152
propertyshape function 152
prototype 13

Q

quote character 5

R

RANK ERROR 269
rank of arrays 3
recursion 114
repeat statements 81
require statement 180
RESIZE 269
return branch statements 94
right argument of function 17
right operand of operators 19
Root object 44

S

scalar arrays 3

scalars 3
scope of functions 17
scope of operators 19
search functions 27
search path 121
section statement 95
select statements 85
self-reference

functions 114
operators 114

semi-colon separator 63
shape of arrays 3
shy result 12
shy results 64, 108
specification 6

of variables 6
standard error action 231
statement separators 65
statements 65

branch statements 94
conditional statements 77

static localisation 46
strand notation 6
structuring of arrays 7
subarrays 14
suppressed result 12
switching threads 197
synchronising threads 204
SYNTAX ERROR 270
syntax of operations 64
sys error number 271
system error codes 279
system error dialog 278, 281
system errors 271
system exceptions 279

T

tail calls 114, 118
thread switching 197
threads 195

debugging 206
external functions 203
latch example 205
paused and suspended 207
semaphore example 205
synchronise 204

Index 301

threads and external functions 203
threads and niladic functions 202
TIMEOUT 271
tokens

introduction 204
latch example 205
semaphore example 205

too many names 272
train 22
TRANSLATION ERROR 271
trap control structure 233
TRAP ERROR 271
trap statements 91
trap system variable 235
trigger fields 144
triggerarguments class 208
triggers 208

global 211
types of arrays 3

U

underbar character 2
unnamed namespaces 49
Unscripted Function 177
until conditional 81
user-defined operations 63
user number 215
using 121
using statement 183

V

valence of functions 17
valence of operations 64
valency 17
valid names 2
VALUE ERROR 272
variables

external 60
specification of 6

vector arrays 3
vector notation 6
vectors 3

empty numeric 5
visible names 66

W

warning duplicate label 272
warning duplicate name 273
warning label name present in line 0 273
warning pendent operation 273
warning unmatched brackets 274
warning unmatched parentheses 274
while statements 80
with statements 87
workspace integrity check 279
Workspaces 1
WS FULL 275
ws not found 275
ws too large 275

Z

zilde constant 5

302 Programming Reference Guide

	Chapter 1: Introduction
	Workspaces
	Legal Names
	Arrays
	Numbers
	Characters
	Enclosed Elements
	Specification of Variables
	Vector Notation
	Structuring of Arrays
	Display of Arrays
	Prototypes and Fill Items
	Cells and Sub-arrays

	Expressions
	Functions
	Operators
	Binding Strength
	Function Trains
	Search Functions and Hash Tables
	Idiom Recognition
	Idiom List

	Parallel Execution
	Complex Numbers
	128 Bit Decimal Floating-Point Support
	Introduction
	System Variable: Floating-point Representation
	Conversion between Decimal and Binary
	Decimal Comparison Tolerance
	Name Association and Floating-point Values
	Decimal Floats and Microsoft.NET

	Namespaces
	Namespace Syntax
	Namespace Reference Evaluation
	Namespaces and Localisation
	Namespace References
	Unnamed Namespaces
	Arrays of Namespace References
	Distributed Assignment
	Distributed Functions
	Namespaces and Operators
	Serialising Namespaces

	External Variables
	Component Files
	Auxiliary Processors

	Chapter 2: Defined Functions & Operators
	Traditional Functions and Operators
	Model Syntax
	Statements
	Global & Local Names
	Locals Lines
	Namelists
	Locked Functions & Operators
	Function Declaration Statements
	Access Statement
	Attribute Statement
	Implements Statement
	Signature Statement

	Control Structures
	If Statement
	While Statement
	Repeat Statement
	For Statement
	Select Statement
	With Statement
	Hold Statement
	Trap Statement
	GoTo Statement
	Return Statement
	Leave Statement
	Continue Statement
	Section Statement
	Disposable Statement

	APL Line Editor

	Dfns & Dops
	Multi-Line Dfns
	Default Left Argument
	Guards
	Shy Result
	Lexical Name Scope
	Error-Guards
	Dops
	Recursion
	Tail Calls
	Restrictions

	Chapter 3: Object Oriented Programming
	Introducing Classes
	Defining Classes
	Editing Classes
	Inheritance
	Instances

	Constructors
	Constructor Overloading
	Niladic (Default) Constructors
	Empty Arrays of Instances: Why ?
	Empty Arrays of Instances: How?
	Base Constructors
	Niladic Example
	Monadic Example

	Destructors
	Class Members
	Fields
	Public Fields
	Initialising Fields
	Private Fields
	Shared Fields
	Trigger Fields

	Methods
	Shared Methods
	Instance Methods
	Superseding Base Class Methods

	Properties
	Simple Instance Properties
	Simple Shared Properties
	Numbered Properties
	Example
	The Default Property
	ComponentFile Class
	Keyed Properties
	Example

	Interfaces
	Penguin Class Example

	Including Namespaces in Classes
	Example

	Nested Classes
	GolfService Example Class
	GolfService Example

	Namespace Scripts
	Namespace Script Example

	Including Script Files in Scripts
	Class Declaration Statements
	:Interface Statement
	:Namespace Statement
	:Class Statement
	:Using Statement
	:Attribute Statement
	:Access Statement
	:Implements Statement
	:Field Statement

	:Property Section
	PropertyArguments Class
	PropertyGet Function
	PropertySet Function
	PropertyShape Function

	Chapter 4: Threads and Triggers
	Threads
	Multi-Threading language elements.
	Thread Switching
	Name Scope
	Stack Considerations
	Globals and the Order of Execution
	Threads & Niladic Functions
	Threads & External Functions
	Synchronising Threads
	Semaphore Example
	Latch Example
	Debugging Threads

	Triggers
	Global Triggers

	Chapter 5: APL Files
	Introduction
	Component Files
	Programming Techniques
	File Design
	Internal Structure
	The Effect of Buffering
	Integrity and Security

	Chapter 6: Error Trapping
	Standard Error Action
	Error Trapping Concepts
	Example Traps
	Signalling Events
	Handling Unexpected Application Errors in Windows

	Chapter 7: Error Messages
	Introduction
	APL Errors
	Operating System Error Messages
	Windows Operating System Error Messages
	APL Error Messages
	bad ws
	cannot create name
	clear ws
	copy incomplete
	DEADLOCK
	defn error
	DOMAIN ERROR
	EOF INTERRUPT
	EXCEPTION
	FIELD CONTENTS RANK ERROR
	FIELD CONTENTS TOO MANY COLUMNS
	FIELD POSITION ERROR
	FIELD CONTENTS TYPE MISMATCH
	FIELD TYPE BEHAVIOUR UNRECOGNISED
	FIELD ATTRIBUTES RANK ERROR
	FIELD ATTRIBUTES LENGTH ERROR
	FULL SCREEN ERROR
	KEY CODE UNRECOGNISED
	KEY CODE RANK ERROR
	KEY CODE TYPE ERROR
	FORMAT FILE ACCESS ERROR
	FORMAT FILE ERROR
	FILE ACCESS ERROR
	FILE ACCESS ERROR CONVERTING
	FILE COMPONENT DAMAGED
	FILE DAMAGED
	FILE FULL
	FILE INDEX ERROR
	FILE NAME ERROR
	FILE NAME QUOTA USED UP
	FILE SYSTEM ERROR
	FILE SYSTEM NO SPACE
	FILE SYSTEM NOT AVAILABLE
	FILE SYSTEM TIES USED UP
	FILE TIE ERROR
	FILE TIED
	FILE TIED REMOTELY
	FILE TIE QUOTA USED UP
	FORMAT ERROR
	HOLD ERROR
	incorrect command
	INDEX ERROR
	INTERNAL ERROR
	INTERRUPT
	is name
	LENGTH ERROR
	LIMIT ERROR
	NONCE ERROR
	NO PIPES
	name is not a ws
	Name already exists
	Namespace does not exist
	not copied name
	not found name
	not saved this ws is name
	PROCESSOR TABLE FULL
	RANK ERROR
	RESIZE
	name saved date time
	SYNTAX ERROR
	sys error number
	TIMEOUT
	TRANSLATION ERROR
	TRAP ERROR
	too many names
	VALUE ERROR
	warning duplicate label
	warning duplicate name
	warning pendent operation
	warning label name present
	warning unmatched brackets
	warning unmatched parentheses
	was name
	WS FULL
	ws not found
	ws too large

	Operating System Error Messages
	FILE ERROR 1 Not owner
	FILE ERROR 2 No such file
	FILE ERROR 5 I O error
	FILE ERROR 6 No such device
	FILE ERROR 13 Permission denied
	FILE ERROR 20 Not a directory
	FILE ERROR 21 Is a directory
	FILE ERROR 23 File table overflow
	FILE ERROR 24 Too many open
	FILE ERROR 26 Text file busy
	FILE ERROR 27 File too large
	FILE ERROR 28 No space left
	FILE ERROR 30 Read only file

	System Errors

	Symbolic Index
	Index

